Advertisement

Ionics

, Volume 25, Issue 1, pp 241–251 | Cite as

A new solid-state electrolyte based on polymeric ionic liquid for high-performance supercapacitor

  • Xinge Wen
  • Tao Dong
  • Ao Liu
  • Shuohang Zheng
  • Shimou Chen
  • Yifan HanEmail author
  • Suojiang ZhangEmail author
Original Paper
  • 276 Downloads

Abstract

As a polymer host, one polymeric ionic liquid poly(methyl methacrylate-1-vinyl-3-ethyl-imidazolium bis(trifluoromethylsulfonyl) imide) (abbr. P(MMA-co-VEImTFSI)) was successfully synthesized and characterized. Four poly(vinylidene fluoride-co-hexafluoropropylene) (abbr. PVDF-HFP)-based polymer electrolytes were prepared by blending 0, 5,15, and 25 wt% P(MMA-co-VEImTFSI). The electrochemical performances of the prepared electrolytes were studied carefully. The results revealed that increasing the polymeric ionic liquid content, the ionic conductivity of the polymer electrolytes could be enhanced and it obeyed the Arrhenius rule. The highest ionic conductivity of the polymer electrolytes was up to 2.09 × 10−3 S cm−1 at room temperature. The polymer with 25 wt% polymeric ionic liquid showed an excellent electrochemical performance for supercapacitor electrolyte. After 2000 cycles, the retention of capacitance in P(MMA-co-VEImTFSI)-based polymer electrolyte was above 80%. It implied that the present P(MMA-co-VEImTFSI) polymeric ionic liquid was a decent component candidate in the high-performance polymer electrolytes.

Keywords

Polymeric ionic liquid Solid-state electrolyte Supercapacitor High conductivity 

Notes

Funding information

This work was supported financially by the National Key R&D Program of China (No. 2017YFB0102000), the National Natural Science Foundation of China (91534109, 51561145020), Key Research Program of Frontier Sciences, CAS(QYZDY-SSW-JSC011), CAS/SAFEA International Partnership Program for Creative Research Teams (20140491518), and Science and Technology Open Cooperation Project of Henan province (No. 17210110019).

References

  1. 1.
    Anothumakkool B, Torris ATA, Veeliyath S, Vijayakumar V, Badiger MV, Kurungot S (2016) High-performance flexible solid-state supercapacitor with an extended nanoregime interface through in situ polymer electrolyte generation. ACS Appl Mater Interfaces 8:1233–1241CrossRefGoogle Scholar
  2. 2.
    Ahuja P, Sharma RK, Singh G (2015) Solid-state, high-performance supercapacitor using graphene nanoribbons embedded with zinc manganite. J Mater Chem A 3:4931–4937CrossRefGoogle Scholar
  3. 3.
    Wang Q, Song WL, Fan LZ, Shi Q (2015) Effect of polyacrylonitrile on triethylene glycol diacetate-2-propenoic acid butyl ester gel polymer electrolytes with interpenetrating cross linked network for flexible lithium ion batteries. J Power Sources 295:139–148CrossRefGoogle Scholar
  4. 4.
    Liu B, Huang Y, Cao HJ, Zhao L, Huang YX, Song AM, Lin YX, Li X, Wang MS (2017) A novel porous gel polymer electrolyte based on poly (acrylonitrile-polyhedral oligomeric silsesquioxane) with high performances for lithium-ion batteries. J Membr Sci 545:140–149CrossRefGoogle Scholar
  5. 5.
    Wang YY, Hou BH, Guo JZ, Ning QL, Pang WL, Wang J, Lü CL, Wu XL (2018) An ultralong lifespan and low-temperature workable sodium-ion full battery for stationary energy storage. Adv Energy Mater 8:1703252CrossRefGoogle Scholar
  6. 6.
    Guo JZ, Yang Y, Liu DS, Wu XL, Hou BH, Pang WL, Huang KC, Zhang JP, Su ZM (2018) A practicable Li/Na-ion hybrid full battery assembled by a high-voltage cathode and commercial graphite anode: superior energy storage performance and working mechanism. Adv Energy Mater 8:1702504CrossRefGoogle Scholar
  7. 7.
    Hou BH, Wang YY, Guo JZ, Zhang Y, Ning QL, Yang Y, Li WH, Zhang JP, Wang X, Wu XL (2018) A scalable strategy to develop advanced anode for sodium-ion batteries: commercial Fe3O4 derived Fe3O4@ FeS with superior full-cell performance. ACS Appl Mater Interfaces 10:3581–3589CrossRefGoogle Scholar
  8. 8.
    Pandey GP, Hashmi SA (2013) Ionic liquid 1-ethyl-3-methylimidazolium tetracyanoborate-based gel polymer electrolyte for electrochemical capacitors. J Mater Chem A 1:3372–3378CrossRefGoogle Scholar
  9. 9.
    Bao JJ, Tao C, Yu R, Gao MH, Huang YP, Chen CH (2017) Solid polymer electrolyte based on waterborne polyurethane for all-solid-state lithium ion batteries. J Appl Polym Sci 134:45554CrossRefGoogle Scholar
  10. 10.
    Gerbaldi C, Nair JR, Kulandainathan MA, Kumar RS, Ferrara C, Mustarelli P, Stephan AM (2014) Innovative high performing metal organic framework (MOF)-laden nanocomposite polymer electrolytes for all-solid-state lithium batteries. J Mater Chem A 2:9948–9954CrossRefGoogle Scholar
  11. 11.
    Thayumanasundaram S, Rangasamy VS, Seo JW, Locquet JP (2015) Lithium polymer electrolytes based on sulfonated poly (ether ether ketone) for lithium polymer batteries. Eur J Inorg Chem 32:5395–5404CrossRefGoogle Scholar
  12. 12.
    Li LB, Yang XY, Li JS, Xu YP (2018) A novel and shortcut method to prepare ionic liquid gel polymer electrolyte membranes for lithium-ion battery. Ionics 24:735–741CrossRefGoogle Scholar
  13. 13.
    Liu LL, Li ZH, Xia QL, Xiao QZ, Lei GT, Zhou XD (2012) Electrochemical study of P(VDF-HFP)/PMMA blended polymer electrolyte with high-temperature stability for polymer lithium secondary batteries. Ionics 18:275–281CrossRefGoogle Scholar
  14. 14.
    Dong Y, Ding TJ, Fan LZ (2017) A free-standing and thermostable polymer/plastic crystal electrolyte for all-solid-state lithium batteries. Ionics 23:3339–3345CrossRefGoogle Scholar
  15. 15.
    Wang X, Yang CY, Wang GC (2016) Stretchable fluoroelastomer quasi-solid-state organic electrolyte for high-performance asymmetric flexible supercapacitors. J Mater Chem A 4:14839–14848CrossRefGoogle Scholar
  16. 16.
    Huang Y, Zhong M, Shi F, Liu X, Tang Z, Wang Y, Huang Y, Hou H, Xie X, Zhi C (2017) An intrinsically stretchable and compressible supercapacitor containing a polyacrylamide hydrogel electrolyte. Angew Chem Int Ed 56:9141–9145CrossRefGoogle Scholar
  17. 17.
    Zhu M, Huang Y, Huang Y, Li H, Wang Z, Pei Z, Xue Q, Geng H, Zhi C (2017) A highly durable, transferable, and substrate-versatile high-performance all-polymer micro-supercapacitor with plug-and-play function. Adv Mater 29:1605137CrossRefGoogle Scholar
  18. 18.
    Lei Z, Chen B, Koo YM, MacFarlane DR (2017) Introduction: ionic liquids. Chem Rev 117:6633–6635CrossRefGoogle Scholar
  19. 19.
    MacFarlane DR, Forsyth M, Howlett PC, Pringle JM, Sun JZ, Annat G, Neil W, Izgorodina EI (2007) Ionic liquids in electrochemical devices and processes: managing interfacial electrochemistry. Acc Chem Res 40:1165–1173CrossRefGoogle Scholar
  20. 20.
    Qian WJ, Texter J, Yan F (2017) Frontiers in poly(ionic liquid)s: syntheses and applications. Chem Soc Rev 46:1124–1159CrossRefGoogle Scholar
  21. 21.
    Dong T, Zhang SJ, Zhang L, Chen SM, Lu XM (2015) Improving cycling performance of LiMn2O4 battery by adding an ester-functionalized ionic liquid to electrolyte. Aust J Chem 68:1911–1917CrossRefGoogle Scholar
  22. 22.
    Pont AL, Marcilla R, Meatza DI, Grande H, Mecerreyes D (2009) Pyrrolidinium-based polymeric ionic liquids as mechanically and electrochemically stable polymer electrolytes. J Power Sources 188:558–563CrossRefGoogle Scholar
  23. 23.
    Balducci A, Jeong SS, Kim GT, Passerini S, Winter M, Schmuck M, Appetecchi GB, Marcilla R, Mecerreyes D, Barsukov V, Cantero I, Meatza D, Holzapfel M, Tran N (2011) Development of safe, green and high performance ionic liquids-based batteries (ILLIBATT project). J Power Sources 196:9719–9730CrossRefGoogle Scholar
  24. 24.
    Huang KC, Li HH, Fan HH, Guo JZ, Xing YM, Wu XL, Zhang JP (2017) An in-situ-fabricated composite polymer electrolyte containing large-anion lithium salt for all-solid-state LiFePO4/Li batteries. ChemElectroChem 4:1–8CrossRefGoogle Scholar
  25. 25.
    Wu X-L, Li Y-H, Wu N, Xin S, Kim J-H, Yan Y, Lee JS, Guo YG (2013) Enhanced working temperature of PEO-based polymer electrolyte via porous PTFE film as an efficient heat resister. Solid State Ionics 245:1–7CrossRefGoogle Scholar
  26. 26.
    Appetecchi GB, Kim GT, Montanino M, Carewska M, Marcilla R, Mecerreyes D, De Meatza I (2010) Ternary polymer electrolytes containing pyrrolidinium-based polymeric ionic liquids for lithium batteries. J Power Sources 195:3668–3675CrossRefGoogle Scholar
  27. 27.
    Li MT, Yang L, Fang SH, Dong SM, Hirano SI, Tachibana K (2012) Polymerized ionic liquids with guanidinium cations as host for gel polymer electrolytes in lithium metal batteries. Polym Int 61:259–264CrossRefGoogle Scholar
  28. 28.
    Li MT, Yang L, Fang SH, Dong SM, Hirano SI, Tachibana K (2011) Polymer electrolytes containing guanidinium-based polymeric ionic liquids for rechargeable lithium batteries. J Power Sources 196:8662–8668CrossRefGoogle Scholar
  29. 29.
    Li MT, Yang BL, Wang L, Zhang Y, Zhang Z, Fang SH, Zhang ZX (2013) New polymerized ionic liquid (PIL) gel electrolyte membranes based on tetraalkylammonium cations for lithium ion batteries. J Membr Sci 447:222–227CrossRefGoogle Scholar
  30. 30.
    Li MT, Wang L, Yang BL, Du TT, Zhang Y (2014) Facile preparation of polymer electrolytes based on the polymerized ionic liquid poly ((4-vinylbenzyl) trimethylammonium bis(trifluoromethanesulfonylimide)) for lithium secondary batteries. Electrochim Acta 23:296–302CrossRefGoogle Scholar
  31. 31.
    Yin K, Zhang ZX, Yang L, Hirano SI (2014) An imidazolium-based polymerized ionic liquid via novel synthetic strategy as polymer electrolytes for lithium ion batteries. J Power Sources 258:150–154CrossRefGoogle Scholar
  32. 32.
    Yin K, Zhang ZX, Li XW, Yang L, Tachibana K, Hirano SI (2015) Polymer electrolytes based on dicationic polymeric ionic liquids: application in lithium metal batteries. J Mater Chem A 3:170–178CrossRefGoogle Scholar
  33. 33.
    Porcarelli L, Shaplov AS, Salsamendi M, Nair JR, Vygodskii YS, Mecerreyes D, Grbaldi C (2016) Single-ion block copoly(ionic liquid)s as electrolytes for all-solid state lithium batteries. ACS Appl Mater Interfaces 8:10350–10359CrossRefGoogle Scholar
  34. 34.
    Tiruye GA, Munoz-Torrero D, Palma J, Anderson M, Marcilla R (2015) All-solid state supercapacitors operating at 3.5 V by using ionic liquid based polymer electrolytes. J Power Sources 279:472–480CrossRefGoogle Scholar
  35. 35.
    Du CH, Ma XM, Wu CJ, Cai MQ, Hu MX, Wang T (2015) Polymerizable ionic liquid copolymer P(MMA-co-BVIm-Br) and its effect on the surface wettability of PVDF blend membranes. Chin J Polym Sci 33:857–868CrossRefGoogle Scholar
  36. 36.
    Pekel N, Şahiner N, Güven O, Rzaev ZMO (2001) Synthesis and characterization of N-vinylimidazole–ethyl methacrylate copolymers and determination of monomer reactivity ratios. Eurpolym J 37:2443–2451Google Scholar
  37. 37.
    Kumar R, Sekhon SS (2008) Effect of molecular weight of PMMA on the conductivity and viscosity behavior of polymer gel electrolytes containing NH4CF3SO3. Ionics 14:509–514CrossRefGoogle Scholar
  38. 38.
    Arunkumar R, Babu RS, Usha Rani M, Kalainathan S (2017) Effect of PBMA on PVC-based polymer blend electrolytes. J Appl Polym Sci 134:44939CrossRefGoogle Scholar
  39. 39.
    Pandey GP, Hashmi SA (2013) Performance of solid-state supercapacitors with ionic liquid 1-ethyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate based gel polymer electrolyte and modified MWCNT electrodes. Electrochim Acta 105:333–341CrossRefGoogle Scholar
  40. 40.
    Liu YQ, Weng B, Razal JM, Xu Q, Zhao C, Hou YY, Seyedin SY, Jalili R, Wallace GG, Chen J (2015) High-performance flexible all-solid-state supercapacitor from large free-standing graphene-PEDOT/PSS films. Sci Rep 5:17045CrossRefGoogle Scholar
  41. 41.
    Liew CW, Ramesh S, Arof AK (2015) Characterization of ionic liquid added poly (vinyl alcohol)-based proton conducting polymer electrolytes and electrochemical studies on the supercapacitors. Int J Hydrog Energy 40:852–862CrossRefGoogle Scholar
  42. 42.
    Zhang X, Liu T, Zhang SF, Huang X, Xu BQ, Lin YH, Xu B, Li LL, Nan CW, Shen Y (2017) Synergistic coupling between Li6.75La3Zr1.75Ta0.25O12 and poly (vinylidene fluoride) induces high ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes. J Am Chem Soc 139:13779–13785CrossRefGoogle Scholar
  43. 43.
    Liang B, Tang SQ, Jiang QB, Chen CS, Chen X, Li SL, Yan XC (2015) Preparation and characterization of PEO-PMMA polymer composite electrolytes doped with nano-Al2O3. Electrochim Acta 169:334–341CrossRefGoogle Scholar
  44. 44.
    Yang CY, Sun MQ, Wang X, Wang GC (2015) A novel flexible supercapacitor based on cross-linked PVDF-HFP porous organogel electrolyte and carbon nanotube paper@ π-conjugated polymer film electrodes. ACS Sustain Chem Eng 3:2067–2076CrossRefGoogle Scholar
  45. 45.
    Yadav N, Mishra K, Hashmi S (2017) Optimization of porous polymer electrolyte for quasi-solid-state electrical double layer supercapacitor. Electrochim Acta 235:570–582CrossRefGoogle Scholar
  46. 46.
    Zhao K, Qin QQ, Wang HF, Yang Y, Yan J, Jiang XM (2017) Antibacterial triboelectric membrane-based highly-efficient self-charging supercapacitors. Nano Energy 36:30–37CrossRefGoogle Scholar
  47. 47.
    Kim TY, Lee HW, Stoller M, Dreyer DR, Bielawski CW, Ruoff RS, Suh KS (2010) High-performance supercapacitors based on poly (ionic liquid)-modified graphene electrodes. ACS Nano 5:436–442CrossRefGoogle Scholar
  48. 48.
    Zhong XW, Tang J, Cao LJ, Kong WG, Sun Z, Cheng H, Lu ZG, Pan H, Xu BM (2017) Cross-linking of polymer and ionic liquid as high-performance gel electrolyte for flexible solid-state supercapacitors. Electrochim Acta 244:112–118CrossRefGoogle Scholar
  49. 49.
    Vijayakumar V, Anothumakkool B, Torris ATA, Nair SB, Badiger MV, Kurungot S (2017) An all-solid-state-supercapacitor possessing a non-aqueous gel polymer electrolyte prepared using a UV-assisted in situ polymerization strategy. J Mater Chem A 5:8461–8476CrossRefGoogle Scholar
  50. 50.
    Li ZF, Ma GQ, Ge R, Qin F, Dong XY, Meng W, Liu TF, Tong JH, Jiang FY, Zhou YF, Li K, Min X, Huo KF, Zhou YH (2016) Free-standing conducting polymer films for high-performance energy devices. Angew Chem Int Ed 55:979–982CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Chemical Engineering and EnergyZhengzhou UniversityZhengzhouChina
  2. 2.Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process EngineeringChinese Academy of SciencesBeijingChina

Personalised recommendations