, Volume 25, Issue 1, pp 341–352 | Cite as

Effect of SHI on properties of template synthesized Cu nanowires

  • Rashi Gupta
  • R. P. Chauhan
  • S. K. Chakarvarti
  • Rajesh KumarEmail author
Original Paper


Metallic as well as semiconducting nanostructures have generated wide interest and are achieving growing importance because of their potential applications in various devices, such as batteries, manufacturing of electrical contacts in microelectronics, MEMS, and solar cells. In the present work, template synthesis method coupled with electrodeposition has been used to synthesize copper nanowires of diameter 200 nm into the pores of a polycarbonate track-etched (PCTE) membrane. The synthesized Cu nanowires were irradiated with 150-MeV Ti9+ swift heavy ions at Inter University Accelerator Centre (IUAC), New Delhi, India. The pristine and irradiated nanowires were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Energy dispersive spectroscopy (EDS), and Keithley 2400 series source meter to study their structural, morphological, elemental, and electrical properties, respectively. XRD analysis confirmed the face-centered cubic crystal system for pristine as well as irradiated samples. The lattice strain and crystallite size were evaluated using line broadening analysis methods following modified Scherrer method. Theoretical calculations have been done to obtain Young’s modulus of the nanowires and that has further been used to evaluate stress generated in the nanowires. Hall-Petch relation has been used to evaluate the change in strengthening coefficient in the nanowires due to irradiation. SEM analysis confirmed the cylindrical morphology of wires with a uniform diameter throughout the complete length of the wires. A change in electrical conductivity of the nanowires has been observed with increase in the fluence which is attributed to change in the orientation of grain boundaries and formation of defects.

Graphical abstract


Electrodeposition Swift heavy ions X-ray diffraction Scanning electron microscopy Mechanical properties Electrical properties 


Funding information

One of the authors, Dr. Rajesh Kumar, acknowledges the FRGS project (GGSIPU/DRC/Ph.D./Adm./2016/1561) and IUAC research project (IUAC/XIII.3A/59319) for the financial support for carrying out this work.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Wang X, Yu C, Wu J, Zhang Y (2013) Template-free hydrothermal synthesis of ZnO microrods for gas sensor application. Ionics 19:355–360. CrossRefGoogle Scholar
  2. 2.
    Wumair T, Dou J, Zhang L, Chen M, Kang X (2013) Synthesis of carbon microtubules core structure LiFePO4 via a template-assisted method. Ionics 19:1855–1860. CrossRefGoogle Scholar
  3. 3.
    Del Valle MA, Hernández LA, Ramírez AM et al (2017) Electrosynthesis of polyquinone nanowires with dispersed platinum nanoparticles toward formic acid oxidation. Ionics 23:191–199. CrossRefGoogle Scholar
  4. 4.
    Singh H, Laibinis PE, Hatton TA (2005) Synthesis of flexible magnetic nanowires of permanently linked core-shell magnetic beads tethered to a glass surface patterned by microcontact printing. Nano Lett 5:2149–2154. CrossRefGoogle Scholar
  5. 5.
    Choi WK, Liew TH, Dawood MK, Smith HI, Thompson CV, Hong MH (2008) Synthesis of silicon nanowires and nanofin arrays using interference lithography and catalytic etching. Nano Lett 8:3799–3802. CrossRefGoogle Scholar
  6. 6.
    Stelzner T, Andrä G, Wendler E, Wesch W, Scholz R, Gösele U, Christiansen S (2006) Growth of silicon nanowires by chemical vapour deposition on gold implanted silicon substrates. Nanotechnology 17:2895–2898. CrossRefGoogle Scholar
  7. 7.
    Kaps S, Bhowmick S, Gröttrup J, Hrkac V, Stauffer D, Guo H, Warren OL, Adam J, Kienle L, Minor AM, Adelung R, Mishra YK (2017) Piezoresistive response of quasi-one-dimensional ZnO nanowires using an in situ electromechanical device. ACS Omega 2:2985–2993. CrossRefGoogle Scholar
  8. 8.
    Sanger A, Jain PK, Mishra YK, Chandra R (2017) Palladium decorated silicon carbide nanocauliflowers for hydrogen gas sensing application. Sensors Actuators B Chem 242:694–699. CrossRefGoogle Scholar
  9. 9.
    Hölken I, Neubüser G, Postica V, Bumke L, Lupan O, Baum M, Mishra YK, Kienle L, Adelung R (2016) Sacrificial template synthesis and properties of 3D hollow-silicon nano- and microstructures. ACS Appl Mater Interfaces 8:20491–20498. CrossRefGoogle Scholar
  10. 10.
    Kumar A, Sanger A, Kumar A, Mishra YK, Chandra R (2016) Performance of high energy density symmetric supercapacitor based on sputtered MnO2 nanorods. ChemistrySelect 1:3885–3891. CrossRefGoogle Scholar
  11. 11.
    Kumar S, Vohra A, Chakarvarti SK (2012) Synthesis and morphological studies of ZnCuTe ternary nanowires via template-assisted electrodeposition technique. J Mater Sci Mater Electron 23:1485–1491. CrossRefGoogle Scholar
  12. 12.
    Liang L, Koshizali N, Li G (2008) Nanotube arrays in porous alumina membranes. J Mater Sci Technol 24:550Google Scholar
  13. 13.
    Movsesyan L, Schubert I, Yeranyan L, Trautmann C, Eugenia Toimil-Molares M (2016) Influence of electrodeposition parameters on the structure and morphology of ZnO nanowire arrays and networks synthesized in etched ion-track membranes. Semicond Sci Technol 31:14006. CrossRefGoogle Scholar
  14. 14.
    Kemell M, Pore V, Tupala J, Ritala M, Leskelä M (2007) Atomic layer deposition of nanostructured TiO2 photocatalysts via template approach. Chem Mater 19:1816–1820. CrossRefGoogle Scholar
  15. 15.
    Schönenberger C, van der Zande BMI, Fokkink LGJ, Henny M, Schmid C, Krüger M, Bachtold A, Huber R, Birk H, Staufer U (1997) Template synthesis of nanowires in porous polycarbonate membranes: electrochemistry and morphology. J Phys Chem B 101:5497–5505. CrossRefGoogle Scholar
  16. 16.
    Valizadeh S, George JM, Leisner P, Hultman L (2002) Electrochemical synthesis of Ag/Co multilayered nanowires in porous polycarbonate membranes. Thin Solid Films 402:262–271. CrossRefGoogle Scholar
  17. 17.
    Song S, Bohuslav G, Capitano A, du J, Taniguchi K, Cai Z, Sun L (2012) Experimental characterization of electrochemical synthesized Fe nanowires for biomedical applications. J Appl Phys 111:56103. CrossRefGoogle Scholar
  18. 18.
    Ertan A, Tewari S, Talu O (2008) Electrodeposition of nickel nanowires and nanotubes using various templates. J Exp Nanosci 3:287–295. CrossRefGoogle Scholar
  19. 19.
    Monika, Kumar R, Chauhan RP et al (2015) Preparation and field emission study of low-dimensional ZnS arrays and tubules. J Exp Nanosci 10:126–134. CrossRefGoogle Scholar
  20. 20.
    Monika, Kumar R et al. (2013) Preparation and characterization of Ag2Se nanowalled tubules by electrochemical method. Chalcogenide Lett 10:99–104Google Scholar
  21. 21.
    Colli A, Fasoli A, Pisana S, Fu Y, Beecher P, Milne WI, Ferrari AC (2008) Nanowire lithography on silicon. Nano Lett 8:1358–1362. CrossRefGoogle Scholar
  22. 22.
    Luo R, Cho I, Feng Y, Cai L, Rao PM, Zheng X (2013) Morphological control of heterostructured nanowires synthesized by sol-flame method. Nanoscale Res Lett 8:347. CrossRefGoogle Scholar
  23. 23.
    Tian M, Wang J, Kurtz J, Mallouk TE, Chan MHW (2003) Electrochemical growth of single-crystal metal nanowires via a two-dimensional nucleation and growth mechanism. Nano Lett 3:919–923. CrossRefGoogle Scholar
  24. 24.
    Zhu Y, Dou X, Huang X et al (2006) Thermal properties of Bi nanowire arrays with different orientations and diameters. J Phys Chem B 110:26189–26193. CrossRefGoogle Scholar
  25. 25.
    Critchley K, Khanal BP, Górzny MŁ, Vigderman L, Evans SD, Zubarev ER, Kotov NA (2010) Near-bulk conductivity of gold nanowires as nanoscale interconnects and the role of atomically smooth interface. Adv Mater 22:2338–2342. CrossRefGoogle Scholar
  26. 26.
    Xu W-H, Wang L, Guo Z, Chen X, Liu J, Huang XJ (2015) Copper nanowires as nanoscale interconnects: their stability, electrical transport, and mechanical properties. ACS Nano 9:241–250. CrossRefGoogle Scholar
  27. 27.
    Kucheyev SO, Timmers H, Zou J, Williams JS, Jagadish C, Li G (2004) Lattice damage produced in GaN by swift heavy ions. J Appl Phys 95:5360–5365. CrossRefGoogle Scholar
  28. 28.
    Kucheyev SO Lattice damage produced in GaN by swift heavy ions. J Appl Phys 95:5360.
  29. 29.
    Jaiswal MK, Kanjilal D, Kumar R (2013) Structural and optical studies of 100 MeV Au irradiated thin films of tin oxide. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 314:170–175. CrossRefGoogle Scholar
  30. 30.
    Williams JS, Kucheyev SO, Tan HH et al (2005) Ion irradiation-induced disordering of semiconductors: defect structures and applications. Philos Mag 85:677–687. CrossRefGoogle Scholar
  31. 31.
    Shojaee SA, Qi Y, Wang YQ, Mehner A, Lucca DA (2017) Ion irradiation induced structural modifications and increase in elastic modulus of silica based thin films. Sci Rep 7:40100. CrossRefGoogle Scholar
  32. 32.
    Khara GS, Murphy ST, Duffy DM (2017) Dislocation loop formation by swift heavy ion irradiation of metals. J Phys Condens Matter 29:285303. CrossRefGoogle Scholar
  33. 33.
    Biswas A, Gupta R, Kumar N, Avasthi DK, Singh JP, Lotha S, Fink D, Paul SN, Bose SK (2001) Recrystallization in polyvinylidene fluoride upon low fluence swift heavy ion impact. Appl Phys Lett 78:4136–4138. CrossRefGoogle Scholar
  34. 34.
    Avasthi DK (2000) Some interesting aspects of swift heavy ions in materials science. Curr Sci 78:1297–1302Google Scholar
  35. 35.
    Srivastava SK, Avasthi DK, Pippel E (2006) Swift heavy ion induced formation of nanocolumns of C clusters in a Si based polymer. Nanotechnology 17:2518–2522. CrossRefGoogle Scholar
  36. 36.
    Zhao M, Liu F, Yang Z, Xu Q, Ding F, Li X, Zhou H, Luo GN (2018) Fluence dependence of helium ion irradiation effects on the microstructure and mechanical properties of tungsten. Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms 414:121–125. CrossRefGoogle Scholar
  37. 37.
    Wang PP, Xu C, Fu EG, du JL, Gao Y, Wang XJ, Qiu YH (2018) The study on the electrical resistivity of Cu/V multilayer films subjected to helium (He) ion irradiation. Appl Surf Sci 440:396–402. CrossRefGoogle Scholar
  38. 38.
    Inani H, Singhal R, Sharma P, Vishnoi R, Ojha S, Chand S, Sharma GD (2017) Electronic excitation induced modifications of structural, electrical and optical properties of Cu-C60 nanocomposite thin films. Nucl Instruments Methods Phys Res Sect B Beam Interact Mater Atoms 407:73–79. CrossRefGoogle Scholar
  39. 39.
    Nath AK, Kumar A (2014) Swift heavy ion irradiation induced enhancement in electrochemical properties of ionic liquid based PVdF-HFP-layered silicate nanocomposite electrolyte membranes. J Memb Sci 453:192–201. CrossRefGoogle Scholar
  40. 40.
    Ossi PM, Pastorelli R (1997) Structural changes induced by fast heavy ion irradiation of pure metals. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 122:566–570CrossRefGoogle Scholar
  41. 41.
    Brinkman JA (1954) On the nature of radiation damage in metals. J Appl Phys 25:961–970. CrossRefGoogle Scholar
  42. 42.
    Toulemonde M, Paumier E, Dufour C (1993) Thermal spike model in the electronic stopping power regime. Radiat Eff Defects Solids 126:201–206. CrossRefGoogle Scholar
  43. 43.
    Yavuz H, Kaygili O (2011) The effect of gamma-ray irradiation on the electrical conductivity of CuO–PbO glasses. Radiat Eff Defects Solids 166:100–103. CrossRefGoogle Scholar
  44. 44.
    Balamurugan B, Mehta BR, Avasthi DK, Singh F, Arora AK, Rajalakshmi M, Raghavan G, Tyagi AK, Shivaprasad SM (2002) Modifying the nanocrystalline characteristics—structure, size, and surface states of copper oxide thin films by high-energy heavy-ion irradiation. J Appl Phys 92:3304–3310. CrossRefGoogle Scholar
  45. 45.
    Latif A, Khaleeq-ur-Rahman M, Bhatti KA, Rafique MS, Rizvi ZH (2011) Crystallography and surface morphology of ion-irradiated silver. Radiat Eff Defects Solids 166:265–271. CrossRefGoogle Scholar
  46. 46.
    Homoth J, Wenderoth M, Druga T, Winking L, Ulbrich RG, Bobisch CA, Weyers B, Bannani A, Zubkov E, Bernhart AM, Kaspers MR, Möller R (2009) Electronic transport on the nanoscale: ballistic transmission and Ohm’s law. Nano Lett 9:1588–1592. CrossRefGoogle Scholar
  47. 47.
    Wharam DA, Thornton TJ, Newbury R, Pepper M, Ahmed H, Frost JEF, Hasko DG, Peacock DC, Ritchie DA, Jones GAC (1988) One-dimensional transport and the quantisation of the ballistic resistance. J Phys C Solid State Phys 21:L209–L214. CrossRefGoogle Scholar
  48. 48.
    Gupta R, Kumar R, Chauhan RP, Chakarvarti SK (2018) Gamma ray induced modifications in copper microwires synthesized using track-etched membrane. Vacuum 148:239–247. CrossRefGoogle Scholar
  49. 49.
    Srivastava NK, Rattan S, Mehra RM (2009) Effect of γ-ray irradiation on morphology and electrical properties of poly (vinyl chloride)/graphite composites. Polym Eng Sci 49:1136–1141. CrossRefGoogle Scholar
  50. 50.
    Singhal P, Rattan S (2016) Swift heavy ion irradiation as a tool for homogeneous dispersion of nanographite platelets within the polymer matrices: toward tailoring the properties of PEDOT:PSS/nanographite nanocomposites. J Phys Chem B 120:3403–3413. CrossRefGoogle Scholar
  51. 51.
    Adibi F, Petrov I, Greene JE, Hultman L, Sundgren JE (1993) Effects of high-flux low-energy (20–100 eV) ion irradiation during deposition on the microstructure and preferred orientation of Ti 0.5Al0.5N alloys grown by ultra-high-vacuum reactive magnetron sputtering. J Appl Phys 73:8580–8589. CrossRefGoogle Scholar
  52. 52.
    Rani S, Puri NK, Roy SC, Bhatnagar MC, Kanjilal D (2008) Effect of swift heavy ion irradiation on structure, optical, and gas sensing properties of SnO2 thin films. Nucl Instruments Methods Phys Res Sect B Beam Interact Mater Atoms 266:1987–1992. CrossRefGoogle Scholar
  53. 53.
    Yadav H, Sinha N, Goel S, Kumar B (2016) Eu-doped ZnO nanoparticles for dielectric, ferroelectric and piezoelectric applications. J Alloys Compd 689:333–341. CrossRefGoogle Scholar
  54. 54.
    Goel S, Sinha N, Yadav H, Godara S, Joseph AJ, Kumar B (2017) Ferroelectric Gd-doped ZnO nanostructures: enhanced dielectric, ferroelectric and piezoelectric properties. Mater Chem Phys 202:56–64. CrossRefGoogle Scholar
  55. 55.
    Prabhu YT, Rao KV, Kumar VSS, Kumari BS (2014) X-ray analysis by Williamson-Hall and size-strain plot methods of ZnO nanoparticles with fuel variation. World J Nano. Sci Eng 4:21–28. Google Scholar
  56. 56.
    Kumar R, Singh P, Gupta SK, Gupta R, Jaiswal MK, Prasad M, Roychowdhury A, Chauhan RP, Das D (2017) Radiation induced nano-scale free volume modifications in amorphous polymeric material: a study using positron annihilation lifetime spectroscopy. J Radioanal Nucl Chem 314:1659–1666. CrossRefGoogle Scholar
  57. 57.
    Dhillon RK, Singh P, Gupta SK, Singh S, Kumar R (2013) Study of high energy (MeV) N6+ ion and gamma radiation induced modifications in low density polyethylene (LDPE) polymer. Nucl Instruments Methods Phys Res Sect B Beam Interact Mater Atoms 301:12–16. CrossRefGoogle Scholar
  58. 58.
    Gupta SK, Gupta R, Singh P, Kumar V, Jaiswal MK, Chakarvarti SK, Kumar R (2017) Modifications in physico-chemical properties of 100 MeV oxygen ions irradiated polyimide Kapton-H polymer. Nucl Instruments Methods Phys Res Sect B Beam Interact Mater Atoms 406:188–192. CrossRefGoogle Scholar
  59. 59.
    Singh P, Asad S, Kumar R (2014) Modifications of structural, optical and chemical properties of Li3+ irradiated polyurethane and polyetheretherketone. Radiat Phys Chem 96:181–185. CrossRefGoogle Scholar
  60. 60.
    Kumar V, Kumar R, Lochab SP, Singh N (2007) Effect of swift heavy ion irradiation on nanocrystalline CaS: Bi phosphors: structural, optical and luminescence studies. Nucl Instruments Methods Phys Res Sect B Beam Interact Mater Atoms 262:194–200. CrossRefGoogle Scholar
  61. 61.
    Mallick P, Rath C, Prakash J, Mishra DK, Choudhary RJ, Phase DM, Tripathi A, Avasthi DK, Kanjilal D, Mishra NC (2010) Swift heavy ion irradiation induced modification of the microstructure of NiO thin films. Nucl Instruments Methods Phys Res Sect B Beam Interact Mater Atoms 268:1613–1617. CrossRefGoogle Scholar
  62. 62.
    Borah MN, Chaliha S, Sarmah PC et al (2008) Effect of substrate temperature on structural properties of thermally evaporated CdSe thin films of different thickness. Optoelectron Adv Mat 2:342Google Scholar
  63. 63.
    Girija K, Thirumalairajan S, Mohan SM (2009) Structural, morphological and optical studies of CdSe thin films from ammonia bath. Chalogenide Lett 6:351–357Google Scholar
  64. 64.
    Zhao Y, Zhang J (2008) Microstrain and grain-size analysis from diffraction peak width and graphical derivation of high-pressure thermomechanics. J Appl Crystallogr 41:1095–1108. CrossRefGoogle Scholar
  65. 65.
    Bushroa AR, Rahbari RG, Masjuki HH, Muhamad MR (2012) Approximation of crystallite size and microstrain via XRD line broadening analysis in TiSiN thin films. Vacuum 86:1107–1112. CrossRefGoogle Scholar
  66. 66.
    Sahai A, Goswami N (2014) Structural and vibrational properties of ZnO nanoparticles synthesized by the chemical precipitation method. Physical E Low-Dimensional Syst Nanostruct 58:130–137. CrossRefGoogle Scholar
  67. 67.
    Yousefi R, Zak AK, Jamali-Sheini F (2013) Growth, X-ray peak broadening studies, and optical properties of Mg-doped ZnO nanoparticles. Mater Sci Semicond Process 16:771–777. CrossRefGoogle Scholar
  68. 68.
    Chen W-H, Cheng H-C, Yu C-F (2016) The mechanical, thermodynamic, and electronic properties of cubic Au4Al crystal via first-principles calculations. J Alloys Compd 689:857–864. CrossRefGoogle Scholar
  69. 69.
    Lu C, Jin K, Béland LK, Zhang F, Yang T, Qiao L, Zhang Y, Bei H, Christen HM, Stoller RE, Wang L (2016) Direct observation of defect range and evolution in ion-irradiated single crystalline Ni and Ni binary alloys. Sci Rep 6:19994. CrossRefGoogle Scholar
  70. 70.
    Kharisov BI, Kharissova OV, Mendez UO (2013) Radiation synthesis of materials and compounds. CRC Press, Boca Raton.CrossRefGoogle Scholar
  71. 71.
    Callister WD (2005) Fundamentals of materials science and engineering, 2nd edn. Wiley, New York, p 252Google Scholar
  72. 72.
    Zhu YZ, Wang SZ, Li BL, Yin ZM, Wan Q, Liu P (2014) Grain growth and microstructure evolution based mechanical property predicted by a modified Hall–Petch equation in hot worked Ni76Cr19AlTiCo alloy. Mater Des 55:456–462. CrossRefGoogle Scholar
  73. 73.
    Furukawa M, Horita Z, Nemoto M, Valiev RZ, Langdon TG (1996) Microhardness measurements and the Hall-Petch relationship in an AlMg alloy with submicrometer grain size. Acta Mater 44:4619–4629. CrossRefGoogle Scholar
  74. 74.
    Smith A, William F, Javad H (2006) Foundations of materials science and engineering, 4th edn. McGraw-Hill, BostonGoogle Scholar
  75. 75.
    Zheng P, Gall D (2017) The anisotropic size effect of the electrical resistivity of metal thin films: tungsten. J Appl Phys 122:135301. CrossRefGoogle Scholar
  76. 76.
    Kofstad P, Norby T (2007) Defects and transport in crystalline solids. University of Oslo, OsloGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Rashi Gupta
    • 1
  • R. P. Chauhan
    • 2
  • S. K. Chakarvarti
    • 2
  • Rajesh Kumar
    • 1
    Email author
  1. 1.University School of Basic and Applied SciencesGuru Gobind Singh Indraprastha UniversityNew DelhiIndia
  2. 2.Department of PhysicsNational Institute of TechnologyKurukshetraIndia

Personalised recommendations