Advertisement

Ionics

, Volume 25, Issue 1, pp 9–15 | Cite as

Synthesis and characterization of a sulfur/TiO2 composite for Li-S battery

  • Zhen-jiang He
  • Lin-bo Tang
  • Jian-long Wang
  • Chang-sheng An
  • Bin Xiao
  • Jun-chao ZhengEmail author
Original Paper

Abstract

S/TiO2 composite is prepared via a simple solution method by using sublimed sulfur and nanosized TiO2. The composite is characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and Brunauer–Emmett–Teller (BET) test. The results indicate that the sulfur is well dispersed in the composite. The electrochemical performance of the composite as cathode material was evaluated by cycling under constant current cyclic voltammetric (CC-CV) mode at room temperature and cyclic voltammetry (CV). The S/TiO2 composite can effectively confine the diffusion of dissolved polysulfides in electrolyte and stabilize the structure during the charge and discharge process and shows high capacity and good rate performance.

Keywords

Li-S battery S/TiO2 composite Cathode material Rate performance 

Notes

Funding information

This study was supported by the National Natural Science Foundation of China (Grant No. 51572300) and the Innovation-Driven Project of Central South University (No. 2016CX021).

References

  1. 1.
    Ji X, Nazar LF (2010) Advances in Li–S batteries. J Mater Chem 20:9821CrossRefGoogle Scholar
  2. 2.
    Yang Y, Yu GH, Cha JJ, Wu H, Vosgueritchian M, Yao Y, Bao ZN, Cui Y (2011) Improving the performance of lithium–sulfur batteries by conductive polymer coating. ACS Nano 5:9187–9193CrossRefGoogle Scholar
  3. 3.
    Zhou CX, Wang PB, Zheng JC, Xia CY, Zhang B, Xi XM, Xiao KS, Liao DQ, Yang LS, Chen XQ, Qin SB (2017) Cyclic performance of Li-rich layered material Li 1.1 Ni 0.35 Mn 0.65 O 2 synthesized through a two-step calcination method. Electrochim Acta 252:286–294CrossRefGoogle Scholar
  4. 4.
    Zheng J, Yang B, Wang X, Zhang B, Tong H, Yu W, Zhang J (2018) Comparative investigation of Na2FeP2O7sodium insertion material synthesized by using different sodium sources. ACS Sustain Chem Eng 6(4):4966–4972CrossRefGoogle Scholar
  5. 5.
    Zheng JC, Han YD, Sun D, Zhang B, Cairns EJ (2017) In situ-formed LiVOPO 4 @V 2 O 5 core-shell nanospheres as a cathode material for lithium-ion cells. Energy Storage Mater 7:48–55CrossRefGoogle Scholar
  6. 6.
    Zheng JC, Han YD, Tang LB, Zhang B (2016) Investigation of phase structure change and electrochemical performance in LiVP2O7-Li3V2(PO4)3-LiVPO4F system. Electrochim Acta 198:195–202CrossRefGoogle Scholar
  7. 7.
    Ji X, Lee KT, Nazar LF (2009) A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat Mater 8:500–506CrossRefGoogle Scholar
  8. 8.
    Wang H, Zhang W, Liu H, Guo Z (2016) A strategy for configuration of an integrated flexible sulfur cathode for high-performance lithium-sulfur batteries. Angew Chem 55:3992–3996CrossRefGoogle Scholar
  9. 9.
    Wang H, Zhou T, Li D, Gao H, Gao G, Du A, Liu H, Guo Z (2017) Ultrathin cobaltosic oxide nanosheets as an effective sulfur encapsulation matrix with strong affinity toward polysulfides. ACS Appl Mater Interfaces 9:4320–4325CrossRefGoogle Scholar
  10. 10.
    Wang H, Zhang C, Chen Z, Liu H, Guo Z (2015) Large-scale synthesis of ordered mesoporous carbon fiber and its application as cathode material for lithium–sulfur batteries. Carbon 81:782–787CrossRefGoogle Scholar
  11. 11.
    Yin LC, Wang JL, Lin FJ, Yang J, Nuli YN (2012) Polyacrylonitrile/graphene composite as a precursor to a sulfur-based cathode material for high-rate rechargeable Li–S batteries. Energy Environ Sci 5:6966CrossRefGoogle Scholar
  12. 12.
    Nelson J, Misra S, Yang Y, Jackson A, Liu Y, Wang H, Dai H, Andrews JC, Cui Y, Toney MF (2012) In operando X-ray diffraction and transmission X-ray microscopy of lithium sulfur batteries. J Am Chem Soc 134:6337–6343CrossRefGoogle Scholar
  13. 13.
    Zhang SS (2013) Liquid electrolyte lithium/sulfur battery: fundamental chemistry, problems, and solutions. J Power Sources 231:153–162CrossRefGoogle Scholar
  14. 14.
    Liang X, Wen ZY, Liu Y, Zhang H, Huang LZ, Jin J (2011) Highly dispersed sulfur in ordered mesoporous carbon sphere as a composite cathode for rechargeable polymer Li/S battery. J Power Sources 196:3655–3658CrossRefGoogle Scholar
  15. 15.
    Chen SR, Zhai YP, Xu GL, Jiang YX, Zhao DY, Li JT, Huang L, Sun SG (2011) Ordered mesoporous carbon/sulfur nanocomposite of high performances as cathode for lithium–sulfur battery. Electrochem Acta 56:9549–9555CrossRefGoogle Scholar
  16. 16.
    Guo JC, Wang YHXCH (2011) Sulfur-impregnated disordered carbon nanotubes cathode for lithium–sulfur batteries. Nano Lett 11:4288–4294CrossRefGoogle Scholar
  17. 17.
    Wei W, Wang JL, Zhou LJ, Yang J, Schumann B, NuLi Y (2011) CNT enhanced sulfur composite cathode material for high rate lithium battery. Electrochem Commun 13:399–402CrossRefGoogle Scholar
  18. 18.
    Li N, Zheng M, Lu H, Hu Z, Shen C, Chang X, Ji G, Cao J, Shi Y (2012) High-rate lithium–sulfur batteries promoted by reduced graphene oxide coating. Chem Commun 48:4106–4108CrossRefGoogle Scholar
  19. 19.
    Wang H, Yang Y, Liang Y, Robinson JT, Li Y, Jackson A, Cui Y, Dai H (2011) Graphene-wrapped sulfur particles as a rechargeable lithium–sulfur battery cathode material with high capacity and cycling stability. Nano Lett 11:2644–2647CrossRefGoogle Scholar
  20. 20.
    Evers S, Nazar LF (2012) Graphene-enveloped sulfur in a one pot reaction: a cathode with good coulombic efficiency and high practical sulfur content. Chem Commun 48:1233–1235CrossRefGoogle Scholar
  21. 21.
    Fu YZ, Manthiram A (2012) Core-shell structured sulfur-polypyrrole composite cathodes for lithium-sulfur batteries. RSC Adv 2:5927CrossRefGoogle Scholar
  22. 22.
    Wu F, Chen JZ, Chen RJ, Wu SX, Li L, Chen S, Zhao T (2011) Sulfur/polythiophene with a core/shell structure: synthesis and electrochemical properties of the cathode for rechargeable lithium batteries. J Phys Chem C 115:6057–6063CrossRefGoogle Scholar
  23. 23.
    Li GC, Li GR, Ye SH, Gao XP (2012) A Polyaniline-coated sulfur/carbon composite with an enhanced high-rate capability as a cathode material for lithium/sulfur batteries. Adv Energy Mater 2:1238–1245CrossRefGoogle Scholar
  24. 24.
    Choi YJ, Jung BS, Lee DJ, Jeong JH, Kim KW, Ahn HJ, Cho KK, Gu HB (2007) Phys Scr Theol 129:62CrossRefGoogle Scholar
  25. 25.
    Ji XL, Evers S, Black R, Nazar LF (2011) Stabilizing lithium–sulphur cathodes using polysulphide reservoirs. Nat Commun 2:325CrossRefGoogle Scholar
  26. 26.
    Evers S, Yim T, Nazar LF (2012) Understanding the nature of absorption/adsorption in nanoporous polysulfide sorbents for the Li–S battery. J Phys Chem C 116:19653–19658CrossRefGoogle Scholar
  27. 27.
    Seh ZW, Li W, Cha JJ (2013) Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries. Nat Commun 4:1331CrossRefGoogle Scholar
  28. 28.
    Song MS, Han SC, Kim HS, Kim JH, Kim KT, Kang YM, Ahn HJ, Dou SX, Lee JY (2004) Effects of nanosized adsorbing material on electrochemical properties of sulfur cathodes for Li/S secondary batteries. J Electrochem Soc 151:A791CrossRefGoogle Scholar
  29. 29.
    Zhang B, Qin X, Li G, Gao XP (2010) Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres. Energy Environ Sci 3:1531CrossRefGoogle Scholar
  30. 30.
    Zhang B, Lai C, Zhou Z (2009) Preparation and electrochemical properties of sulfur–acetylene black composites as cathode materials. Electrochem Acta 54:3708–3713CrossRefGoogle Scholar
  31. 31.
    Li KF, Wang B, Su DW, Park J, Ahn H, Wang GX (2012) Enhance electrochemical performance of lithium sulfur battery through a solution-based processing technique. J Power Sources 202:389–393CrossRefGoogle Scholar
  32. 32.
    Fu Y (2012) Orthorhombic bipyramidal sulfur coated with polypyrrole nanolayers as a cathode material for lithium–sulfur batteries. A Manthiram J Phys Chem C 116:8910–8915CrossRefGoogle Scholar
  33. 33.
    Zhang SS, Read JA (2012) A new direction for the performance improvement of rechargeable lithium/sulfur batteries. J Power Sources 200:77–82CrossRefGoogle Scholar
  34. 34.
    Choi JW, Kim JK, Cheruvally G (2007) Rechargeable lithium/sulfur battery with suitable mixed liquid electrolytes. Electrochem Acta 52:2075–2082CrossRefGoogle Scholar
  35. 35.
    Marmorstein D, Yu T, Striebel K (2000) Electrochemical performance of lithium/sulfur cells with three different polymer electrolytes. J Power Sources 89:219–226CrossRefGoogle Scholar
  36. 36.
    Zhang Y, Wu X, Feng H (2009) Effect of nanosized Mg0.8Cu0.2O on electrochemical properties of Li/S rechargeable batteries. Int J Hydrog Energy 34:1556–1559CrossRefGoogle Scholar
  37. 37.
    Zheng W, Liu Y, Hu X (2006) Novel nanosized adsorbing sulfur composite cathode materials for the advanced secondary lithium batteries. Electrochem Acta 51:1330–1335CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Zhen-jiang He
    • 1
  • Lin-bo Tang
    • 1
  • Jian-long Wang
    • 1
  • Chang-sheng An
    • 1
  • Bin Xiao
    • 1
  • Jun-chao Zheng
    • 1
    Email author
  1. 1.School of Metallurgy and EnvironmentCentral South UniversityChangshaPeople’s Republic of China

Personalised recommendations