Advertisement

Ionics

, Volume 25, Issue 1, pp 81–87 | Cite as

Morphology and particle growth of Mn-based carbonate precursor in the presence of ethylene glycol for high-capacity Li-rich cathode materials

  • Yanhong XiangEmail author
  • Jian Li
  • Qijun Liao
  • Xianwen Wu
Original Paper
  • 144 Downloads

Abstract

Mn-based carbonate precursor (Ni0.15Co0.15Mn0.7CO3) is synthesized by the carbonate precipitation in the presence of ethylene glycol. The nucleation and growth of precursor particles are investigated during the precipitation process by monitoring particle morphologies and structures. Primarily irregular-shaped and micron-sized loose agglomerate particles are formed and then the particles grow gradually and continue to aggregate with a round shape. After 3.5 h, obvious segregation is observed within the agglomerations. Finally, the particles obtained after aging overnight have a spherical shape and dispersed with a narrow size distribution. The additive of ethylene glycol shows significant effects on the morphology of the prepared Ni0.15Co0.15Mn0.7CO3 and the electrochemical performance of lithiated Li1.2Ni0.12Co0.12Mn0.56O2.

Keywords

Mn-based carbonate precursor Cathode material Li-rich material Ethylene glycol Li-ion battery 

Notes

Funding information

The work was supported by the National Natural Science Foundation of China (Nos. 51662010, 51364009, 51262008, 51472107, and 51672104), the Educational Commission of Hunan Province, China (Nos. 16B209 and 16B190), the Collaborative Innovation Center of Manganese-Zinc-Vanadium Industrial Technology (the 2011 Plan of Hunan Province), the Research Foundation of Jishou University of Hunan Province, China (Nos. JDLF2016010, 15JDY024, JDSTLY1503, JDZ201503, 201520, and JDST201508), the Aid program (Environment and Energy Materials and Deep Processing of Mineral Resources in Wuling Mountain) for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province (2014[107]), and the Planned Science and Technology Project of Science and Technology Bureau of Xiangxi Tujia and Miao Autonomous Prefecture.

References

  1. 1.
    Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367CrossRefGoogle Scholar
  2. 2.
    Wu X, Xiang Y, Peng Q, Wu X, Li Y, Tang F, Song R, Liu Z, He Z, Wu X (2017) Green-low-cost rechargeable aqueous zinc-ion batteries using hollow porous spinel ZnMn2O4 as the cathode material. J Mater Chem A 5(34):17990–17997CrossRefGoogle Scholar
  3. 3.
    Wang R, Li X, Wang Z, Zhang H (2017) Electrochemical analysis graphite/electrolyte interface in lithium-ion batteries: p-Toluenesulfonyl isocyanate as electrolyte additive. Nano Energy 34:131–140CrossRefGoogle Scholar
  4. 4.
    Su M, Wan H, Liu Y, Xiao W, Dou A, Wang Z, Guo H (2018) Multi-layered carbon coated Si-based composite as anode for lithium-ion batteries. Powder Technol 323:294–300CrossRefGoogle Scholar
  5. 5.
    Wang J, Liu Z, Yan G, Li H, Peng W, Li X, Song L, Shih K (2016) Improving the electrochemical performance of lithium vanadium fluorophosphate cathode material: focus on interfacial stability. J Power Sources 329:553–557CrossRefGoogle Scholar
  6. 6.
    Wu X, Li Y, Xiang Y, Liu Z, He Z, Wu X, Li Y, Xiong L, Li C, Chen J (2016) The electrochemical performance of aqueous rechargeable battery of Zn/Na0.44MnO2 based on hybrid electrolyte. J Power Sources 336:35–39CrossRefGoogle Scholar
  7. 7.
    Wang J, Zhang G, Liu Z, Li H, Liu Y, Wang Z, Li X, Shih K, Mai L (2018) Li3V(MoO4)3 as a novel electrode material with good lithium storage properties and improved initial coulombic efficiency. Nano Energy 44:272–278CrossRefGoogle Scholar
  8. 8.
    Wang R, Wang Z, Li X, Zhang H (2017) Electrochemical analysis the influence of propargyl methanesulfonate as electrolyte additive for spinel LTO interface layer. Electrochim Acta 241:208–219CrossRefGoogle Scholar
  9. 9.
    Thackeray MM, Johnson CS, Vaughey JT, Li N, Hackney SA (2005) Advances in manganese-oxide ‘composite’ electrodes for lithium-ion batteries. J Mater Chem 15(23):2257–2267CrossRefGoogle Scholar
  10. 10.
    Wu L, Lu J, Wei G, Wang P, Ding H, Zheng J, Li X, Zhong S (2014) Synthesis and electrochemical properties of xLiMn0.9Fe0.1PO4·yLi3V2(PO4)3/C composite cathode materials for lithium-ion batteries. Electrochim Acta 146:288–294CrossRefGoogle Scholar
  11. 11.
    Liu Y, Zheng S, Wang Q, Fu Y, Wan H, Dou A, Battaglia VS, Su M (2017) Improvement the electrochemical performance of Cr doped layered-spinel composite cathode material Li1.1Ni0.235 Mn0.735Cr0.03O2.3 with Li4Ti5O12 coating. Ceram Int 43(12):8800–8808CrossRefGoogle Scholar
  12. 12.
    Chen H, He Z, Huang Z, Song L, Shen C, Liu J (2017) The effects of multifunctional coating on Li-rich cathode material with hollow spherical structure for Li-ion battery. Ceram Int 43(12):8616–8624CrossRefGoogle Scholar
  13. 13.
    Liu Y, Zhang Z, Fu Y, Wang Q, Pan J, Su M, Battaglia VS (2016) Investigation the electrochemical performance of Li1.2Ni0.2Mn0.6O2 cathode material with ZnAl2O4 coating for lithium ion batteries. J Alloy Compd 685:523–532CrossRefGoogle Scholar
  14. 14.
    Konishi H, Hirano T, Takamatsu D, Gunji A, Feng X, Furutsuki S, Okumura T, Terada S, Tamura K (2018) Mechanisms responsible for two possible electrochemical reactions in Li1.2Ni0.13Mn0.54Co0.13O2 used for lithium ion batteries. J Solid State Chem 258:225–231CrossRefGoogle Scholar
  15. 15.
    Ju J-H, Ryu K-S (2011) Synthesis and electrochemical performance of Li(Ni0.8Co0.15Al0.05)0.8(Ni0.5Mn0.5)0.2O2 with core-shell structure as cathode material for Li-ion batteries. J Alloy Compd 509(30):7985–7992CrossRefGoogle Scholar
  16. 16.
    Sun Y-K, Lee B-R, Noh H-J, Wu H, Myung S-T, Amine K (2011) A novel concentration-gradient Li[Ni0.83Co0.07Mn0.10]O2 cathode material for high-energy lithium-ion batteries. J Mater Chem 21(27):10108–10112CrossRefGoogle Scholar
  17. 17.
    Wang D, Belharouak I, Koenig GM, Zhou G, Amine K (2011) Growth mechanism of Ni0.3Mn0.7CO3 precursor for high capacity Li-ion battery cathodes. J Mater Chem 21(25):9290–9295CrossRefGoogle Scholar
  18. 18.
    Liu J, Chen H, Xie J, Sun Z, Wu N, Wu B (2013) Morphology and particle growth of a two-phase Ni/Mn precursor for high-capacity Li-rich cathode materials. J Appl Electrochem 44(2):225–232CrossRefGoogle Scholar
  19. 19.
    Xiang Y, Li J, Wu X, Xiong L, Yin Z (2015) Synthesis and characterization of manganese-rich transition metal carbonate precursor in the presence of ethanol. Adv Powder Technol 26(6):1712–1718CrossRefGoogle Scholar
  20. 20.
    Wu F, Wang H, Bai Y, Li Y, Wu C, Chen G, Liu L, Ni Q, Wang X, Zhou J (2017) Hierarchical microspheres and nanoscale particles: effects of morphology on electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material for lithium-ion batteries. Solid State Ionics 300:149–156CrossRefGoogle Scholar
  21. 21.
    Wang M, Luo M, Chen Y, Chen L, Yan S, Ren Y, Chu M (2017) A new approach to improve the electrochemical performance of Li-rich cathode material by precursor pretreatment. J Alloy Compd 696:891–899CrossRefGoogle Scholar
  22. 22.
    Zhang J, Guo X, Yao S, Zhu W, Qiu X (2013) Tailored synthesis of Ni0.25Mn0.75CO3 spherical precursors for high capacity Li-rich cathode materials via a urea-based precipitation. J Power Sources 238:245–250CrossRefGoogle Scholar
  23. 23.
    Zheng J, Deng S, Shi Z, Xu H, Xu H, Deng Y, Zhang Z, Chen G (2013) The effects of persulfate treatment on the electrochemical properties of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material. J Power Sources 221:108–113CrossRefGoogle Scholar
  24. 24.
    He P, Wang H, Qi L, Osaka T (2006) Electrochemical characteristics of layered LiNi1/3Co1/3Mn1/3O2 and with different synthesis conditions. J Power Sources 160(1):627–632CrossRefGoogle Scholar
  25. 25.
    Manoli F, Dalas E (2000) Spontaneous precipitation of calcium carbonate in the presence of ethanol, isopropanol and diethylene glycol. J Cryst Growth 218:359–364CrossRefGoogle Scholar
  26. 26.
    Antipov AA, Shchukin D, Fedutik Y, Petrov AI, Sukhorukov GB, Möhwald H (2003) Carbonate microparticles for hollow polyelectrolyte capsules fabrication. Colloid Surf A 224(1–3):175–183CrossRefGoogle Scholar
  27. 27.
    Larsen MJ, Thorsen A, Jensen SJ (1985) Ethanol-induced formation of solid calcium phosphates. Calcified Tissue Int 37:189–193CrossRefGoogle Scholar
  28. 28.
    Xiang Y, Yin Z, Zhang Y, Li X (2013) Effects of synthesis conditions on the structural and electrochemical properties of the Li-rich material Li[Li0.2Ni0.17Co0.16Mn0.47]O2 via the solid-state method. Electrochim Acta 91:214–218CrossRefGoogle Scholar
  29. 29.
    Armstrong AR, Holzapfel M, Novák P, Johnson CS, Kang S-H, Thackeray MM, Bruce PG (2006) Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2. J Am Chem Soc 128(26):8694–8698CrossRefGoogle Scholar
  30. 30.
    Rao Penki T, Shanmughasundaram D, Jeyaseelan AV, Subramani AK, Munichandraiah N (2013) Polymer template assisted synthesis of porous Li1.2Mn0.53Ni0.13Co0.13O2 as a high capacity and high rate capability positive electrode material. J Electrochem Soc 161(1):A33–A39CrossRefGoogle Scholar
  31. 31.
    Johnson CS, Li N, Lefief C, Thackeray MM (2007) Anomalous capacity and cycling stability of xLi2MnO3·(1-x)LiMO2 electrodes (M=Mn, Ni, Co) in lithium batteries at 50°C. Electrochem Commun 9(4):787–795CrossRefGoogle Scholar
  32. 32.
    Shi S, Zhang S, Wu Z, Wang T, Zong J, Zhao M, Yang G (2017) Full microwave synthesis of advanced Li-rich manganese based cathode material for lithium ion batteries. J Power Sources 337:82–91CrossRefGoogle Scholar
  33. 33.
    Zhang S, Deng C, Fu BL, Yang SY, Ma L (2010) Synthetic optimization of spherical Li[Ni1/3Mn1/3Co1/3]O2 prepared by a carbonate co-precipitation method. Powder Technol 198(3):373–380CrossRefGoogle Scholar
  34. 34.
    Croy JR, Kim D, Balasubramanian M, Gallagher K, Kang S-H, Thackeray MM (2012) Countering the voltage decay in high capacity xLi2MnO3•(1-x)LiMO2 electrodes (M=Mn, Ni, Co) for Li+-ion batteries. J Electrochem Soc 159(6):A781–A790CrossRefGoogle Scholar
  35. 35.
    Cabana J, Johnson CS, Yang X-Q, Chung K-Y, Yoon W-S, Kang S-H, Thackeray MM, Grey CP (2011) Structural complexity of layered-spinel composite electrodes for Li-ion batteries. J Mater Res 25(08):1601–1616CrossRefGoogle Scholar
  36. 36.
    Zhong S, Hu P, Luo X, Zhang X, Ling W (2016) Preparation of LiNi0.5Mn1.5O4 cathode materials by electrospinning. Ionics 22(11):2037–2044CrossRefGoogle Scholar
  37. 37.
    Wang RH, Li XH, Wang ZX, Guo HJ, He ZJ (2015) Electrochemical analysis for enhancing Interface layer of spinel Li4Ti5O12: p-Toluenesulfonyl isocyanate as electrolyte additive. ACS Appl Mater Interfaces 7(42):23605–23614CrossRefGoogle Scholar
  38. 38.
    Xiang Y, Li J, Wu X, Liu Z, Xiong L, He Z, Yin Z (2016) Synthesis and electrochemical characterization of Mg-doped Li-rich Mn-based cathode material. Ceram Int 42(7):8833–8838CrossRefGoogle Scholar
  39. 39.
    Zhong S, Wu L, Liu J (2012) Sol-gel synthesis and electrochemical properties of 9LiFePO4·Li3V2(PO4)3/C composite cathode material for lithium ion batteries. Electrochim Acta 74:8–15CrossRefGoogle Scholar
  40. 40.
    Wu L, Hu Y, Zhang X, Liu J, Zhu X, Zhong S (2018) Synthesis of carbon-coated Na2MnPO4F hollow spheres as a potential cathode material for Na-ion batteries. J Power Sources 374:40–47CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yanhong Xiang
    • 1
    • 2
    Email author
  • Jian Li
    • 1
    • 2
  • Qijun Liao
    • 1
    • 2
  • Xianwen Wu
    • 2
  1. 1.School of Physics and Mechanical and Electrical EngineeringJishou UniversityJishouChina
  2. 2.The Collaborative Innovation Center of Manganese-Zinc-Vanadium Industrial Technology (the 2011 Plan of Hunan Province)JishouChina

Personalised recommendations