Advertisement

Ionics

, Volume 25, Issue 1, pp 89–98 | Cite as

In-situ preparation of mesoporous carbon contained graphite-zinc quantum dots for enhancing the electrochemical performance of LiFePO4

  • XiaoLong Xu
  • ZhenDong Hao
  • Hao WangEmail author
  • Chen Hu
  • JingBing Liu
  • Yi Jin
Original Paper

Abstract

Conductive porous carbons generally are used as the additives to contact with active materials to generate conductive network for electrodes of commercial lithium ion batteries (LIBs). As a cathode material, LiFePO4 (LFP) has been widely used for LIBs. However, it needs higher quantity of conductive carbons to enhance its electrochemical performances due to the low ion diffusion coefficient and low electronic conductivity. In this work, we synthesize the mesoporous carbon contained graphite-zinc quantum dots (MC-GZQDs) via the carbonization of zeolitic imidazolate frameworks-8 (ZIF-8) under anaerobic condition. X-ray diffraction (XRD) test proves that the MC-GZQDs sample is a kind of graphite-type carbon. The N2 adsorption and desorption analysis reveals the hierarchical pore structure and typical ordered mesoporous characteristic. High-resolution transmission electron microscopy (HRTEM) indicates that the sample possesses QDs and it has heterogeneous core (metal Zn)-shell (graphite) structure. As an additive, MC-GZQDs can improve both electronic conductivity and ion diffusion coefficient of LFP due to its high conductivity and porous structure. LFP mixing with MC-GZQDs delivers a high rate performance of 154.6 mAh g−1 at a current rate of 0.5 C and a capacity retention ratio of approximate 99.9% after 60 cycles at 10.0 C.

Keywords

LiFePO4 Zeolitic imidazolate frameworks-8 Mesoporous carbon Graphite-zinc quantum dots 

Notes

Funding information

This work is supported by the Scientific and Technological Development Project of the Beijing Education Committee (No. KZ201710005009), the State Grid Technology Project (No. DG71-17-031), and the Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions (CIT&TCD 201504019).

References

  1. 1.
    Ren WJ, Wang K, Yang JL, Tan R, Hu JT, Guo H, Duan YD, Zheng JX, Lin Y, Pan F (2016) Soft-contact conductive carbon enabling depolarization of LiFePO 4 cathodes to enhance both capacity and rate performances of lithium ion batteries. J Power Sources 331:232–239CrossRefGoogle Scholar
  2. 2.
    Xu XL, Deng SX, Wang H, Liu JB, Yan H (2017) Research progress in improving the cycling stability of high-voltage LiNi0.5Mn1.5O4 cathode in lithium-ion battery. Nano-Micro Lett 9:22CrossRefGoogle Scholar
  3. 3.
    Wang YZ, Shao X, Xu HY, Xie M, Deng SX, Wang H, Liu JB, Yan H (2013) Facile synthesis of porous LiMn2O4 spheres as cathode materials for high-power lithium ion batteries. J Power Sources 226:140–148CrossRefGoogle Scholar
  4. 4.
    Padhi AK, Nanjundaswamy K, Goodenough J (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium Batteries. J Electrochem Soc 144:1188CrossRefGoogle Scholar
  5. 5.
    Saroha R, Panwar AK, Sharma Y (2017) Physicochemical and electrochemical performance of LiFe 1−x Ni x PO 4 (0≤x≤1.0) solid solution as potential cathode material for rechargeable lithium-ion battery. Ceram Int 43:5734–5742CrossRefGoogle Scholar
  6. 6.
    Lu J, Chen ZH, Ma ZF, Pan F, Curtiss LA, Affiliations KA (2016) The role of nanotechnology in the development of battery materials for electric vehicles. Nat Nanotechnol 11:1031–1038CrossRefGoogle Scholar
  7. 7.
    Luo B, Zhi LJ (2015) Design and construction of three dimensional graphene-based composites for lithium ion battery applications. Energy Environ Sci 8:456–477CrossRefGoogle Scholar
  8. 8.
    Zhao NN, Li YS, Zhao XX, Zhi XK, Liang GC (2016) Effect of particle size and purity on the low temperature electrochemical performance of LiFePO 4 /C cathode material. J Alloy Compd 683:123–132CrossRefGoogle Scholar
  9. 9.
    Tu JG, Wu K, Tang H, Zhou HH, Jiao SQ (2017) Mg–Ti co-doping behavior of porous LiFePO4microspheres for high-rate lithium-ion batteries. J Mater Chem A 5:17021–17028CrossRefGoogle Scholar
  10. 10.
    Oh J, Lee J, Hwang T, Kim JM, Seoung K, Piao Y (2017) Dual layer coating strategy utilizing N-doped carbon and reduced graphene oxide for high-performance LiFePO 4 cathode material. Electrochim Acta 231:85–93CrossRefGoogle Scholar
  11. 11.
    Johnson ID, Blagovidova E, Dingwall PA, Brett DJL, Shearing PR, Darr JA (2016) High power Nb-doped LiFePO 4 Li-ion battery cathodes: pilot-scale synthesis and electrochemical properties. J Power Sources 326:476–481CrossRefGoogle Scholar
  12. 12.
    Jia XL, Wei F (2017) Advances in production and applications of carbon nanotubes. Top Curr Chem 375:18CrossRefGoogle Scholar
  13. 13.
    Zhou XF, Wang F, Zhu YM, Liu ZP (2011) Graphene modified LiFePO4 cathode materials for high power lithium ion batteries. J Mater Chem 21:3353CrossRefGoogle Scholar
  14. 14.
    Landi BJ, Ganter MJ, Cress CD, DiLeo RA, Raffaelle RP (2009) Carbon nanotubes for lithium ion batteries. Energy Environ Sci 2:638CrossRefGoogle Scholar
  15. 15.
    Liu XM, Huang ZD, Oh SW, Zhang B, Ma PC, Yuen MM, Kim JK (2012) Carbon nanotube (CNT)-based composites as electrode material for rechargeable Li-ion batteries: a review. Compos Sci Technol 72:121–144CrossRefGoogle Scholar
  16. 16.
    Sehrawat P, Julien C, Islam SS (2016) Carbon nanotubes in Li-ion batteries: a review. Mater Sci Eng B 213:12–40CrossRefGoogle Scholar
  17. 17.
    Jayaramulu K, Datta KKR, Rösler C, Petr M, Otyepka M, Zboril R, Fischer RA (2016) Biomimetic superhydrophobic/superoleophilic highly fluorinated graphene oxide and ZIF-8 composites for oil-water separation. Angew Chem Int Ed 55:1178–1182CrossRefGoogle Scholar
  18. 18.
    Salunkhe RR, Young C, Tang J, Takei T, Ide Y, Kobayashia N, Yamauchi Y (2016) Chem Commun 52:476Google Scholar
  19. 19.
    Tang J, Salunkhe RR, Liu J, Torad NL, Imura M, Furukawa S, Yamauchi Y (2015) Thermal conversion of core–shell metal–organic frameworks: a new method for selectively functionalized nanoporous hybrid carbon. J Am Chem Soc 137:1572–1580CrossRefGoogle Scholar
  20. 20.
    Xu XL, Wang H, Liu JB, Yan H (2017) J Mater Sci Mater Electron 28:1Google Scholar
  21. 21.
    Shi XD, Zhang ZA, Fu Y, Gan YQ (2015) Self-template synthesis of nitrogen-doped porous carbon derived from zeolitic imidazolate framework-8 as an anode for sodium ion batteries. Mater Lett 161:332–335CrossRefGoogle Scholar
  22. 22.
    Cheng F, Wang S, Wang CY, Li WC (2015) Interconnected porous carbon with tunable pore size as a model substrate to confine LiFePO4 cathode material for energy storage. Microporous Mesoporous Mater 204:190–196CrossRefGoogle Scholar
  23. 23.
    Zhang XD, Bi ZY, He W, Yang G, Liu H, Yue YZ (2014) Fabricating high-energy quantum dots in ultra-thin LiFePO4nanosheets using a multifunctional high-energy biomolecule—ATP. Energy Environ Sci 7:2285–2294CrossRefGoogle Scholar
  24. 24.
    Xu XL, Qi CY, Hao ZD, Wang H, Jiu JT, Liu JB, Yan H, Suganuma K (2018) The surface coating of commercial LiFePO4 by utilizing ZIF-8 for high electrochemical performance lithium ion battery. Nano-Micro Lett. 10:1CrossRefGoogle Scholar
  25. 25.
    Zhang GH, Hou SC, Zhang H, Zeng W, Yan FL, Li CC, Duan HG (2015) High-performance and ultra-stable lithium-ion batteries based on MOF-derived ZnO@ZnO quantum dots/C core-shell nanorod arrays on a carbon cloth anode. Adv Mater 27:2400–2405CrossRefGoogle Scholar
  26. 26.
    Zhang YD, Lin BP, Wang JC, Tian JH, Sun Y, Zhang XQ, Yang H (2016) All-solid-state asymmetric supercapacitors based on ZnO quantum dots/carbon/CNT and porous N-doped carbon/CNT electrodes derived from a single ZIF-8/CNT template. J Mater Chem A 4:10282–10293CrossRefGoogle Scholar
  27. 27.
    Sun YH, He GP, Ma GZ (2016) Practical manual of physical chemistry. Chemical Industry Press, BeijingGoogle Scholar
  28. 28.
    Liu YL, Shi CX, Xu XY, Sun PC, Chen TH (2015) Nitrogen-doped hierarchically porous carbon spheres as efficient metal-free electrocatalysts for an oxygen reduction reaction. J Power Sources 283:389–396CrossRefGoogle Scholar
  29. 29.
    Hou HS, Banks CE, Jing MJ, Zhang Y, Ji XB (2015) Carbon quantum dots and their derivative 3D porous carbon frameworks for sodium-ion batteries with ultralong cycle life. Adv Mater 27:7861–7866CrossRefGoogle Scholar
  30. 30.
    Xu XL, Hao ZD, Wang H, Liu JB, Yan H (2017) Mesoporous carbon derived from ZIF-8 for improving electrochemical performances of commercial LiFePO 4. Mater Lett 197:209–212CrossRefGoogle Scholar
  31. 31.
    Zhao KN, Zhang L, Xia R, Dong YF, Xu WW, Niu CJ, He L, Yan MY, Qu LB, Mai LQ (2016) SnO2 quantum dots@graphene oxide as a high-rate and long-life anode material for lithium-ion batteries. Small 12:588–594CrossRefGoogle Scholar
  32. 32.
    Mo RW, Lei ZY, Sun KN, Rooney D (2014) Facile synthesis of anatase TiO2 quantum-dot/graphene-nanosheet composites with enhanced electrochemical performance for lithium-ion batteries. Adv Mater 26:2084–2088CrossRefGoogle Scholar
  33. 33.
    Ge H, Cui L, Zhang B, Ma TY, Song XM (2016) Ag quantum dots promoted Li4Ti5O12/TiO2nanosheets with ultrahigh reversible capacity and super rate performance for power lithium-ion batteries. J Mater Chem A 4:16886–16895CrossRefGoogle Scholar
  34. 34.
    Li Y, Ou C, Huang Y, Shen Y, Li N, Zhang H (2017) Towards fast and ultralong-life Li-ion battery anodes: embedding ultradispersed TiO 2 quantum dots into three-dimensional porous graphene-like networks. Electrochim Acta 246:1183–1192CrossRefGoogle Scholar
  35. 35.
    Li ZQ, Yin LW (2015) Nitrogen-doped MOF-derived micropores carbon as immobilizer for small sulfur molecules as a cathode for lithium sulfur batteries with excellent electrochemical performance. ACS Appl Mater Interfaces 7:4029–4038CrossRefGoogle Scholar
  36. 36.
    Lia DL, Wu SH, Wang FF, Jia SY, Liu Y, Han X, Zhang LW, Zhang SL, Wu YM (2016) A facile one-pot synthesis of hemin/ZIF-8 composite as mimetic peroxidase. Mater Lett 178:48–51CrossRefGoogle Scholar
  37. 37.
    Aijaz A, Fujiwara N, Xu Q (2014) From metal–organic framework to nitrogen-decorated nanoporous carbons: high CO2 uptake and efficient catalytic oxygen reduction. J Am Chem Soc 136:6790–6793CrossRefGoogle Scholar
  38. 38.
    Zhang LJ, Su ZX, Jiang FL, Yang LL, Qian JJ, Zhou YF, Li W, Hong M (2014) Nano 6:6590Google Scholar
  39. 39.
    Sadezky A, Muckenhuber H, Grothe H, Niessner R, Pöschl U (2005) Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information. Carbon 43:1731–1742CrossRefGoogle Scholar
  40. 40.
    Wu HB, Wei SY, Zhang L, Xu R, Hng HH, Lou XW (2013) Embedding sulfur in MOF-derived microporous carbon polyhedrons for lithium-sulfur batteries. Chem Eur J 19:10804–10808CrossRefGoogle Scholar
  41. 41.
    Zubair M, Razzaq A, Grimesc CA, IlIna S (2017) Cu 2 ZnSnS 4 (CZTS)-ZnO: a noble metal-free hybrid Z-scheme photocatalyst for enhanced solar-spectrum photocatalytic conversion of CO 2 to CH 4. J CO2 Util 20:301–311CrossRefGoogle Scholar
  42. 42.
    Wei CL, He W, Zhang XD, Liu SJ, Jin C, Liu SK, Huang Z (2015) Synthesis of biocarbon coated Li3V2(PO4)3/C cathode material for lithium ion batteries using recycled tea. RSC Adv 5:28662–28669CrossRefGoogle Scholar
  43. 43.
    Zhang XD, Xu XL, He W, Yang GH, Shen JX, Liu JH, Liu QZ (2015) LiFePO4/NaFe3V9O19/porous glass nanocomposite cathodes for Li+/Na+mixed-ion batteries. J Mater Chem A 3:22247–22257CrossRefGoogle Scholar
  44. 44.
    Zhang GH, Chen YJ, Qu BH, Hu LL, Mei L, Lei DN, Li Q, Chen LB, Li QH, Wang TH (2012) Synthesis of mesoporous NiO nanospheres as anode materials for lithium ion batteries. Electrochim Acta 80:140–147CrossRefGoogle Scholar
  45. 45.
    Malik R, Burch D, Bazant M, Ceder G (2010) Particle size dependence of the ionic diffusivity. Nano Lett 10:4123–4127CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • XiaoLong Xu
    • 1
  • ZhenDong Hao
    • 1
  • Hao Wang
    • 1
    Email author
  • Chen Hu
    • 2
  • JingBing Liu
    • 1
  • Yi Jin
    • 2
  1. 1.The College of Materials Science and EngineeringBeijing University of TechnologyBeijingChina
  2. 2.State Key Laboratory of Operation and Control Renewable Energy & Storage SystemChina Electric Power Research InstituteBeijingChina

Personalised recommendations