, Volume 25, Issue 1, pp 275–285 | Cite as

Facile synthesis of ZnMn2O4 nanosheets via cathodic electrodeposition: characterization and supercapacitor behavior studies

  • Houshang Barkhordari
  • Hamid Heydari
  • Azad Nosrati
  • Jamil MohammadiEmail author
Original Paper


In this work, we report a facile chemical precipitation method to prepare zinc manganite (ZnMn2O4) materials. ZnMn2O4 nanosheets were synthesized through a cathodic electrolytic electrodeposition (ELD), and their application as supercapacitor electrodes were evaluated. The effect of calcining temperature on the nanostructure and morphology of ZnMn2O4 was investigated systematically through scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), FTIR spectroscopy, X-ray diffractometery (XRD), X-ray photoelectron spectroscopy (XPS), and Brunauer-Emmett-Teller (BET) surface area measurements. Electrochemical properties of the synthesized products as electrodes in a supercapacitor device were studied using cyclic voltammetry (CV), galvanostatic charge/discharge, and electrochemical impedance spectroscopy in aqueous electrolyte. ZnMn2O4 nanosheets exhibiting remarkable electrochemical performance in supercapacitors with specific capacitance (∼457 F g−1 at 1 A g−1), excellent rate capability (67.2% capacity retention at 10 A g−1), and good cycling stability (only 92.5% loss after 4000 cycles at 3 A g−1). All the results demonstrate that the synthesis route is cost-effective, facile, and can development for prepared electrode materials in electrochemical supercapacitors.


Cathodic electrolytic electrodeposition (ELD) Crystallinity ZnMn2O4 nanosheets Supercapacitor 



The authors acknowledge the Shahid Beheshti University for providing laboratory and financial supports to this work.


  1. 1.
    Liu C, Li F, Ma LP, Cheng HM (2010) Advanced materials for energy storage. Adv Mater 22:28–62. CrossRefGoogle Scholar
  2. 2.
    Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854. CrossRefGoogle Scholar
  3. 3.
    Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors? Chem Rev 104:4245–4270. CrossRefGoogle Scholar
  4. 4.
    Miller JR, Simon P (2008) Electrochemical capacitors for energy management. Sci Mag 321:651–652. Google Scholar
  5. 5.
    Simon P, Gogotsi Y, Dunn B (2014) Where do batteries end and supercapacitors begin? Science 343:1210–1211. CrossRefGoogle Scholar
  6. 6.
    Yan J, Wang Q, Wei T, Fan Z (2014) Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv Energy Mater 4:1300816–1130059. CrossRefGoogle Scholar
  7. 7.
    Chen D, Tang L, Li J (2010) Graphene-based materials in electrochemistry. Chem Soc Rev 39:3157–3180. CrossRefGoogle Scholar
  8. 8.
    Itagaki M, Suzuki S, Shitanda I, Watanabe K, Nakazawa H (2007) Impedance analysis on electric double layer capacitor with transmission line model. J Power Sources 164:415–424. CrossRefGoogle Scholar
  9. 9.
    Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828. CrossRefGoogle Scholar
  10. 10.
    He S, Hu C, Hou H, Chen W (2014) Ultrathin MnO2 nanosheets supported on cellulose based carbon papers for high-power supercapacitors. J Power Sources 246:754–761. CrossRefGoogle Scholar
  11. 11.
    Chang J, Jin M, Yao F, Kim TH, Le VT, Yue H, Gunes F, Li B, Ghosh A, Xie S (2013) Asymmetric supercapacitors based on graphene/MnO2 nanospheres and graphene/MoO3 nanosheets with high energy density. Adv Funct Mater 23:5074–5083. CrossRefGoogle Scholar
  12. 12.
    Yuan C, Li J, Hou L, Yang L, Shen L, Zhang X (2012) Facile growth of hexagonal NiO nanoplatelet arrays assembled by mesoporous nanosheets on Ni foam towards high-performance electrochemical capacitors. Electrochim Acta 78:532–538. CrossRefGoogle Scholar
  13. 13.
    Purushothaman KK, Manohara Babu I, Sethuraman B, Muralidharan G (2013) Nanosheet-assembled NiO microstructures for high-performance supercapacitors. ACS Appl Mater Interfaces 5:10767–10773. CrossRefGoogle Scholar
  14. 14.
    Yuan C, Yang L, Hou L, Shen L, Zhang X, Lou XWD (2012) Growth of ultrathin mesoporous Co3O4 nanosheet arrays on Ni foam for high-performance electrochemical capacitors. Energy Environ Sci 5:7883–7887. CrossRefGoogle Scholar
  15. 15.
    Du W, Liu R, Jiang Y, Lu Q, Fan Y, Gao F (2013) Facile synthesis of hollow Co3O4 boxes for high capacity supercapacitor. J Power Sources 227:101–105. CrossRefGoogle Scholar
  16. 16.
    Lu Y, Yan H, Qiu K, Cheng J, Wang W, Liu X, Tang C, Kim J-K, Luo Y (2015) Hierarchical porous CuO nanostructures with tunable properties for high performance supercapacitors. RSC Adv 5:10773–10781. CrossRefGoogle Scholar
  17. 17.
    Ye J, Li Z, Dai Z, Zhang Z, Guo M, Wang X (2016) Facile synthesis of hierarchical CuO nanoflower for supercapacitor electrodes. J Electron Mater 45:4237–4245. CrossRefGoogle Scholar
  18. 18.
    Jiang J, Li Y, Liu J, Huang X, Yuan C, Lou XWD (2012) Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv Mater 24:5166–5180. CrossRefGoogle Scholar
  19. 19.
    Jiang H, Ma J, Li C (2012) Hierarchical porous NiCo2O4 nanowires for high-rate supercapacitors. Chem Commun 48:4465–4467. CrossRefGoogle Scholar
  20. 20.
    Zhang G, Lou XWD (2013) General solution growth of mesoporous NiCo2O4 nanosheets on various conductive substrates as high-performance electrodes for supercapacitors. Adv Mater 25:976–979. CrossRefGoogle Scholar
  21. 21.
    Sharma Y, Sharma N, Rao GS, Chowdari B (2008) Studies on spinel cobaltites, FeCo2O4 and MgCo2O4 as anodes for Li-ion batteries. Solid State Ionics 179:587–597. CrossRefGoogle Scholar
  22. 22.
    Zhang G, Xia BY, Xiao C, Yu L, Wang X, Xie Y, Lou XWD (2013) General formation of complex tubular nanostructures of metal oxides for the oxygen reduction reaction and lithium-ion batteries. Angew Chem Int Ed 125:8805–8809. CrossRefGoogle Scholar
  23. 23.
    Sharma Y, Sharma N, Subba Rao G, Chowdari B (2007) Nanophase ZnCo2O4 as a high performance anode material for Li-ion batteries. Adv Funct Mater 17:2855–2861. CrossRefGoogle Scholar
  24. 24.
    Karthikeyan K, Kalpana D, Renganathan N (2009) Synthesis and characterization of ZnCo2O4 nanomaterial for symmetric supercapacitor applications. Ionics 15:107–110. CrossRefGoogle Scholar
  25. 25.
    Heydari H, Gholivand MB (2017) Novel synthesis and characterization of ZnCo2O4 nanoflakes grown on nickel foam as efficient electrode materials for electrochemical supercapacitors. Ionics 23:1489–1498. CrossRefGoogle Scholar
  26. 26.
    Wang Z, Zhang X, Li Y, Liu Z, Hao Z (2013) Synthesis of graphene–NiFe2O4 nanocomposites and their electrochemical capacitive behavior. J Mater Chem A 1:6393–6399CrossRefGoogle Scholar
  27. 27.
    Xiao J, Yang S (2011) Sequential crystallization of sea urchin-like bimetallic (Ni, Co) carbonate hydroxide and its morphology conserved conversion to porous NiCo2O4 spinel for pseudocapacitors. RSC Adv 1:588–595. CrossRefGoogle Scholar
  28. 28.
    Zhang X-D, Wu Z-S, Zang J, Li D, Zhang Z-D (2007) Hydrothermal synthesis and characterization of nanocrystalline Zn–Mn spinel. J Phys Chem Solids 68:1583–1590. CrossRefGoogle Scholar
  29. 29.
    He W, Wang C, Li H, Deng X, Xu X, Zhai T (2017) Ultrathin and porous Ni3S2/CoNi2S4 3D-network structure for superhigh energy density asymmetric supercapacitors. Adv Energy Mater 7:1700983–1700994. CrossRefGoogle Scholar
  30. 30.
    Yu X, Lu B, Xu Z (2014) Super long-life supercapacitors based on the construction of nanohoneycomb-like strongly coupled CoMoO4–3D graphene hybrid electrodes. Adv Mater 26:1044–1051. CrossRefGoogle Scholar
  31. 31.
    Wang C, Guo K, He W, Deng X, Hou P, Zhuge F, Xu X, Zhai T (2017) Hierarchical CuCo2O4@ nickel-cobalt hydroxides core/shell nanoarchitectures for high-performance hybrid supercapacitors. Sci Bull 62:1122–1131. CrossRefGoogle Scholar
  32. 32.
    Sun P, Wang C, He W, Hou P, Xu X (2017) One-step synthesis of 3D network-like Ni x Co1–x MoO4 porous Nanosheets for high performance battery-type hybrid supercapacitors. ACS Sustain Chem Eng 5:10139–10147. CrossRefGoogle Scholar
  33. 33.
    Liu Y, Wang Y, Xu X, Sun P, Chen T (2014) Facile one-step room-temperature synthesis of Mn-based spinel nanoparticles for electro-catalytic oxygen reduction. RSC Adv 4:4727–4731. CrossRefGoogle Scholar
  34. 34.
    Zhang G, Yu L, Wu HB, Hoster HE, Lou XWD (2012) Formation of ZnMn2O4 ball-in-ball hollow microspheres as a high-performance anode for lithium-ion batteries. Adv Mater 24:4609–4613. CrossRefGoogle Scholar
  35. 35.
    Bhandage G, Keer H (1978) Magnetic properties of the ZnMn2O4-NiMn2O4 system. J Phys C Solid State Phys 11:219–221. CrossRefGoogle Scholar
  36. 36.
    Teh PF, Sharma Y, Ko YW, Pramana SS, Srinivasan M (2013) Tuning the morphology of ZnMn2O4 lithium ion battery anodes by electrospinning and its effect on electrochemical performance. RSC Adv 3:2812–2821. CrossRefGoogle Scholar
  37. 37.
    Wang N, Ma X, Xu H, Chen L, Yue J, Niu F, Yang J, Qian Y (2014) Porous ZnMn2O4 microspheres as a promising anode material for advanced lithium-ion batteries. Nano Energy 6:193–199. CrossRefGoogle Scholar
  38. 38.
    Jin R, Wen Q, Yang L, Li G (2014) ZnMn2O4 mesocrystals for lithium-ion batteries with high rate capacity and cycle stability. Mater Lett 135:55–58. CrossRefGoogle Scholar
  39. 39.
    Kim S-W, Lee H-W, Muralidharan P, Seo D-H, Yoon W-S, Kim DK, Kang K (2011) Electrochemical performance and ex situ analysis of ZnMn2O4 nanowires as anode materials for lithium rechargeable batteries. Nano Res 4:505–510. CrossRefGoogle Scholar
  40. 40.
    Yang Y, Zhao Y, Xiao L, Zhang L (2008) Nanocrystalline ZnMn2O4 as a novel lithium-storage material. Electrochem Commun 10:1117–1120. CrossRefGoogle Scholar
  41. 41.
    Sahoo A, Sharma Y (2015) Synthesis and characterization of nanostructured ternary zinc manganese oxide as novel supercapacitor material. Mater Chem Phys 149:721–727. CrossRefGoogle Scholar
  42. 42.
    Guo N, Wei X, Deng X, Xu X (2015) Synthesis and property of spinel porous ZnMn2O4 microspheres. Appl Surf Sci 356:1127–1134. CrossRefGoogle Scholar
  43. 43.
    Zhitomirsky I (2002) Cathodic electrodeposition of ceramic and organoceramic materials. Fundamental aspects. Adv Colloid Interf 97:279–317. CrossRefGoogle Scholar
  44. 44.
    Gal-Or L, Silberman I, Chaim R (1991) Electrolytic ZrO2 coatings I. Electrochemical aspects. J Electrochem Soc 138:1939–1942. CrossRefGoogle Scholar
  45. 45.
    Therese GHA, Kamath PV (2000) Electrochemical synthesis of metal oxides and hydroxides. Chem Mater 12:1195–1204. CrossRefGoogle Scholar
  46. 46.
    Chen Y, Xie K, Pan Y, Zheng C (2010) Effect of calcination temperature on the electrochemical performance of nanocrystalline LiMn2O4 prepared by a modified resorcinol–formaldehyde route. Solid State Ionics 181:1445–1450. CrossRefGoogle Scholar
  47. 47.
    Oh SW, Bang HJ, Bae YC, Sun Y-K (2007) Effect of calcination temperature on morphology, crystallinity and electrochemical properties of nano-crystalline metal oxides (Co3O4, CuO, and NiO) prepared via ultrasonic spray pyrolysis. J Power Sources 173:502–509. CrossRefGoogle Scholar
  48. 48.
    Liu Y, Zhang X (2009) Effect of calcination temperature on the morphology and electrochemical properties of Co3O4 for lithium-ion battery. Electrochim Acta 54:4180–4185. CrossRefGoogle Scholar
  49. 49.
    Moazami HR, Davarani SSH, Yousefi T, Keshtkar AR (2015) Synthesis of manganese dioxide nanosheets and charge storage evaluation. Mater Sci Semicond Process 30:682–687. CrossRefGoogle Scholar
  50. 50.
    Selim M, Deraz N, Elshafey O, El-Asmy A (2010) Synthesis, characterization and physicochemical properties of nanosized Zn/Mn oxides system. Alloys Compd 506:541–547. CrossRefGoogle Scholar
  51. 51.
    Deng Y, Tang S, Zhang Q, Shi Z, Zhang L, Zhan S, Chen G (2011) Controllable synthesis of spinel nano-ZnMn2O4 via a single source precursor route and its high capacity retention as anode material for lithium ion batteries. J Mater Chem A 21:11987–11995. CrossRefGoogle Scholar
  52. 52.
    Kim JG, Lee SH, Kim Y, Kim WB (2013) Fabrication of free-standing ZnMn2O4 mesoscale tubular arrays for lithium-ion anodes with highly reversible lithium storage properties. ACS Appl Mater Interfaces 5:11321–11328. CrossRefGoogle Scholar
  53. 53.
    Zhang P, Li X, Zhao Q, Liu S (2011) Synthesis and optical property of one-dimensional spinel ZnMn2O4 nanorods. Nanoscale Res Lett 6:1–8. Google Scholar
  54. 54.
    He Y, Chen W, Li X, Zhang Z, Fu J, Zhao C, Xie E (2012) Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes. ACS Nano 7:174–182. CrossRefGoogle Scholar
  55. 55.
    Dai K, Liang C, Dai J, Lu L, Zhu G, Liu Z, Liu Q, Zhang Y (2014) High-yield synthesis of carbon nanotube–porous nickel oxide nanosheet hybrid and its electrochemical capacitance performance. Mater Chem Phys 143:1344–1351. CrossRefGoogle Scholar
  56. 56.
    Hu L, Chen W, Xie X, Liu N, Yang Y, Wu H, Yao Y, Pasta M, Alshareef HN, Cui Y (2011) Symmetrical MnO2–carbon nanotube–textile nanostructures for wearable pseudocapacitors with high mass loading. ACS Nano 5:8904–8913. CrossRefGoogle Scholar
  57. 57.
    Huang T, Zhao C, Qiu Z, Luo J, Hu Z (2017) Hierarchical porous ZnMn2O4 synthesized by the sucrose-assisted combustion method for high-rate supercapacitors. Ionics 23:139–146. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Houshang Barkhordari
    • 1
  • Hamid Heydari
    • 2
  • Azad Nosrati
    • 3
  • Jamil Mohammadi
    • 4
    Email author
  1. 1.Faculty of Mechanical and Energy EngineeringShahid Beheshti UniversityTehranIran
  2. 2.Faculty of SciencesRazi University KermanshahKermanshahIran
  3. 3.Faculty of SciencesUniversity of TehranTehranIran
  4. 4.Faculty of ChemistryShahid Beheshti UniversityTehranIran

Personalised recommendations