Ionics

pp 1–10 | Cite as

Graphene/nano-ZnO hybrid materials modify Ni-foam for high-performance electrochemical glucose sensors

Original Paper
  • 16 Downloads

Abstract

The detection of glucose has been attracting more and more attention. The present work provided a novel glucose sensor based on graphene/zinc oxide nanoparticle nanocomposite modified Ni foam to fabricate an electrode (G-ZnO/Ni foam). The structure and morphology of the electrode were characterized by SEM, XPS, and XRD. And the electrochemical performance of G-ZnO/Ni foam electrode was evaluated using cyclic voltammetry (CV) and amperometry analysis. The resulting electrode exhibited excellent electrocatalytic activity toward the reduction of glucose in a linear range of 50–1000 μmol with a correlation coefficient of 0.986. The sensitivity of the graphene/zinc oxide nanocomposite modified Ni foam sensor was 1635.52 μA mM−1 cm−2. It is has better electrochemical performance for glucose and is promising in high-sensitivity detection of glucose applications.

Keywords

Graphene ZnO nanoparticle Ni foam Glucose sensor 

Notes

Acknowledgements

This work was jointly supported by the postdoctoral scientific research developmental fund of Heilongjiang Province (grant nos. LBH-Q15142, LBH-Q14157), Science and Technology Project of Qiqihar (grant nos. GYGG-201409, GYGG-201619), National Natural Science Foundation of China (21404064), Natural Science Foundation of Heilongjiang Province of China (LC2016022), The Fundamental Research Funds in Heilongjiang Provincial Universities (135106244), University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province (UNPYSCT-2016089), and Scientific Research Foundation for the Returned Overseas Chinese Scholars in Heilongjiang Province.

References

  1. 1.
    Wang J (2005) Stripping analysis at bismuth electrodes: a review. Electroanalysis 17(15–16):1341–1346CrossRefGoogle Scholar
  2. 2.
    Shaw JE, Sicree RA, Zimmet PZ (2010) Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract 87(1):4–14CrossRefGoogle Scholar
  3. 3.
    Wang G, He X, Wang L, Gu A, Huang Y, Fang B, Geng B, Zhang X (2013) Non-enzymatic electrochemical sensing of glucose. Microchim Acta 180(3–4):161–186CrossRefGoogle Scholar
  4. 4.
    Nakayama D, Takeoka Y, Watanabe M, Kataoka K (2003) Simple and precise preparation of a porous gel for a colorimetric glucose sensor by a templating technique. Angew Chem 42(35):4197–4200CrossRefGoogle Scholar
  5. 5.
    Song S, Sun L, Yuan L, Sun T, Zhao Y, Zuo W, Cong Y, Li X, Wang J (2008) Method to determine enantiomeric excess of glucose by nonchiral high-performance liquid chromatography using circular dichroism detection. J Chromatogr A 1179(2):125–130CrossRefGoogle Scholar
  6. 6.
    Lv Y, Zhang Z, Chen F (2003) Chemiluminescence microfluidic system sensor on a chip for determination of glucose in human serum with immobilized reagents. Talanta 59(3):571–576CrossRefGoogle Scholar
  7. 7.
    Yang Z, Cao Y, Li J, Jian Z, Zhang Y, Hu X (2015) Platinum nanoparticles functionalized nitrogen doped graphene platform for sensitive electrochemical glucose biosensing. Anal Chim Acta 871:35–42CrossRefGoogle Scholar
  8. 8.
    Shu H, Chang G, Su J, Cao L, Huang Q, Zhang Y et al (2015) Single-step electrochemical deposition of high performance Au-graphene nanocomposites for nonenzymatic glucose sensing. Sensors Actuators B Chem 220:331–339CrossRefGoogle Scholar
  9. 9.
    Zhang B, He Y, Liu B, Tang D (2015) Nickel-functionalized reduced graphene oxide with polyaniline for non-enzymatic glucose sensing. Microchim Acta 182(3–4):625–631CrossRefGoogle Scholar
  10. 10.
    Chen C, Shi M, Xue M, Hu Y (2017) Synthesis of nickel(II) coordination polymers and conversion into porous NiO nanorods with excellent electrocatalytic performance for glucose detection. RSC Adv 7(36):22208–22214CrossRefGoogle Scholar
  11. 11.
    Ding J, Sun W, Wei G, Zhiqiang S (2015) Cuprous oxide microspheres on grapheme nanosheets: an enhanced material for nonenzymatic electrochemical detection of H2O2 and glucose. RSC Adv 5:35338–35345CrossRefGoogle Scholar
  12. 12.
    Rolison DR, Long JW, Lytle JC, Fischer AE, Rhodes CP, Mcevoy TM et al (2009) Multifunctional 3D nanoarchitectures for energy storage and conversion. Chem Soc Rev 38(1):226–252CrossRefGoogle Scholar
  13. 13.
    Qianqian J, Huiming J, Ying Z, Yalu C, Xiaohong S, Zhengguo J (2014) Rapid and selective detection of acetone using hierarchical ZnO gas sensor for hazardous odor markers application. J Hazard Mater 276(9):262Google Scholar
  14. 14.
    Zhuo K, Yousong G, Xiaoqin Y, Zhiming B, Yichong L, Shuo L et al (2015) Enhanced photoelectrochemical property of ZnO nanorods array synthesized on reduced graphene oxide for self-powered biosensing application. Biosens Bioelectron 64(64C):499–504Google Scholar
  15. 15.
    Kang Z, Li Y, Cao S, Zhang Z, Guo H, Wu P, Zhou L, Zhang S, Zhang X, Zhang Y (2017) 3D graphene foam/ZnO nanorods array mixed-dimensional heterostructure for photoelectrochemical biosensing. Inorg Chem Front 2018(5):364–369Google Scholar
  16. 16.
    Zhao X, Zhang P, Chen Y, Su Z, Wei G (2015) Recent advances in the fabrication and structure-specific applications of graphene-based inorganic hybrid membranes. Nano 7:5080–5093Google Scholar
  17. 17.
    Bai X, Sun C, Di Liu XL, Di Li JW, Wang N, Chang X, Zong R, Zhu Y (2017) Photocatalytic degradation of deoxynivalenol using graphene/ZnO hybrids in aqueous suspension. Appl Catal B Environ 204:11–20CrossRefGoogle Scholar
  18. 18.
    Sreejesh M, Dhanush S, Rossignol F, Nagaraj HS (2017) Microwave assisted synthesis of rGO/ZnO composites for non-enzymatic glucose sensing and supercapacitor applications. Ceram Int 43:4895–4903CrossRefGoogle Scholar
  19. 19.
    Yang Y, Wang Y, Bao X, Li H (2016) Electrochemical deposition of Ni nanoparticles decorated ZnO hexagonal prisms as an effective platform for non-enzymatic detection of glucose. J Electroanal Chem 775:163–170CrossRefGoogle Scholar
  20. 20.
    Wang J, Wang H, Wang Y, Li J, Su Z, Wei G (2014) Alternate layer-by-layer assembly of graphene oxide nanosheets and fibrinogen nanofibers on a silicon substrate for a biomimetic three-dimensional hydroxyapatite scaffold. J Mater Chem B 2:7360–7368CrossRefGoogle Scholar
  21. 21.
    Zhang P, Zhao X, Ji Y, Ouyang Z, Wen X, Li J, Su Z, Wei G (2015) Electrospinning graphene quantum dots into a nanofibrous membrane for dual-purpose fluorescent and electrochemical biosensors. J Mater Chem B 3:2487–2496CrossRefGoogle Scholar
  22. 22.
    Li D, Zhang W, Yu X, Wang Z, Su Z, Wei G (2016) When biomolecules meet graphene: from molecular level interactions to material design and applications. Nano 8:19491–19509Google Scholar
  23. 23.
    Zhang Y, Kang Z, Yan X, Liao Q (2015) ZnO nanostructures in enzyme biosensors. Sci China Mater 58(1):60–76CrossRefGoogle Scholar
  24. 24.
    Sarangi S-N, Nozaki S, Sahu S-N (2015) ZnO nanorod-based nonenzymatic optical glucose biosensor. J Biomed Nanotechnol 11:988–996CrossRefGoogle Scholar
  25. 25.
    Tzanov T, Costa S-A, Gubitz G-M, Paulo A-C (2002) Hydrogen peroxide generation with immobilized glucose oxidase for textile bleaching. J Biotechnol 93:87–94CrossRefGoogle Scholar
  26. 26.
    Guo Q, Zhang M, Liu S, Zhou G, Li X, Hou H, Wang L (2016) Facile synthesis of Ni(OH)2 nanoplates on nitrogen-doped carbon foam for nonenzymatic glucose sensor. Anal Methods 8:8227–8233CrossRefGoogle Scholar
  27. 27.
    Hang R, Liu Y, Gao A, Bai L, Huang X, Zhang X et al (2015) Highly ordered Ni–Ti–O nanotubes for non-enzymatic glucose detection. Mater Sci Eng C 51:37–42CrossRefGoogle Scholar
  28. 28.
    Cao X, Wang K, Du G, Asiri AM, Ma Y, Lu Q et al (2016) One-step electrodeposition of a nickel cobalt sulfide nanosheet film as a highly sensitive nonenzymatic glucose sensor. J Mater Chem B 4(47):7540–7544CrossRefGoogle Scholar
  29. 29.
    Xia K, Yang C, Chen Y, Tian L, Su Y, Wang J et al (2017) In situ, fabrication of Ni(OH)2, flakes on Ni foam through electrochemical corrosion as high sensitive and stable binder-free electrode for glucose sensing. Sensors Actuators B Chem 240:979–987CrossRefGoogle Scholar
  30. 30.
    Xiao Q, Wang X, Huang S (2017) Facile synthesis of Ni(OH)2, nanowires on nickel foam via one step low-temperature hydrothermal route for non-enzymatic glucose sensor. Mater Lett 198:19–22CrossRefGoogle Scholar
  31. 31.
    Wang L, Xie Y, Wei C, Lu X, Li X, Song Y (2015) Hierarchical NiO superstructures/foam Ni electrode derived from Ni metal-organic framework flakes on foam Ni for glucose sensing. Electrochim Acta 174:846–852CrossRefGoogle Scholar
  32. 32.
    Liu Z, Guo Y, Dong C (2015) A high performance nonenzymatic electrochemical glucose sensor based on polyvinylpyrrolidone–graphene nanosheets–nickel nanoparticles–chitosan nanocomposite. Talanta 137:87–93CrossRefGoogle Scholar
  33. 33.
    Shen Z, Gao W, Li P, Wang X, Zheng Q, Wu H, Ma Y, Guan W, Wu S, Yu Y, Ding K (2016) Highly sensitive nonenzymatic glucose sensor based on nickel nanoparticle-attapulgite-reduced graphene oxide-modified glassy carbon electrode. Talanta 159:194–199CrossRefGoogle Scholar
  34. 34.
    Kung CW, Cheng YH, Ho KC (2014) Single layer of nickel hydroxide nanoparticles covered on a porous Ni foam and its application for highly sensitive non-enzymatic glucose sensor. Sensors Actuators B Chem 204:159–166CrossRefGoogle Scholar
  35. 35.
    Iwu KO, Lombardo A, Sanz R, Scirè S, Mirabella S (2015) Facile synthesis of Ni nanofoam for flexible and low-cost non-enzymatic glucose sensing. Sensors Actuators B Chem 224:764–771CrossRefGoogle Scholar
  36. 36.
    Gao A, Zhang X, Peng X, Wu H, Bai L, Jin W et al (2016) In situ, synthesis of Ni(OH)2/TiO2, composite film on NiTi alloy for non-enzymatic glucose sensing. Sensors Actuators B Chem 232:150–157CrossRefGoogle Scholar
  37. 37.
    Chen J, Zheng J (2015) A highly sensitive non-enzymatic glucose sensor based on tremella-like Ni(OH)2, and Au nanohybrid films. J Electroanal Chem 749:83–88CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Communications and Electronics EngineeringQiqihar UniversityQiqiharChina
  2. 2.College of Materials Science and EngineeringQiqihar UniversityQiqiharChina

Personalised recommendations