, Volume 24, Issue 10, pp 3027–3037 | Cite as

Modification in the transport and morphological properties of solid polymer electrolyte system by low-energy ion irradiation

  • H. Manjunatha
  • R. Damle
  • Kumar Pravin
  • G. N. KumaraswamyEmail author
Original Paper


The poly(ethylene oxide) (PEO)-based solid polymer electrolyte (SPE) systems consisting of NaBr as a dopant salt are prepared. The stable PEO:NaBr system with 3 wt% of NaBr was subjected to low-energy ion beam irradiation to bring in morphological modification. The irradiated samples are studied using complex impedance spectra to evaluate electrical conductivity and relaxation process in the system. The studies show an increase in conductivity by one order magnitude in the irradiated systems. The dielectric loss tangent (tanδ) curves show a single peak due to strong coupling of ion transport with segmental motion. The resultant relaxation time τ exhibits a continuous decrease indicating increase in segmental dynamics as a result of increased amorphous content in the system. The temperature-dependent studies also indicate that the irradiated systems are more disordered/amorphous compared to pure systems. This fact is further supported by XRD, by observing an increase in peak width associated with reduction in peak intensity. The Raman spectra also support the change in morphology of the system by the appearance of disordered-longitudinal acoustic mode band.


Solid polymer electrolyte Ion irradiation Ion transport Segmental relaxation 



The authors gratefully acknowledge IUAC, New Delhi, for providing Low Energy Ion Beam Facility. The authors thank MNCF, IISc, for providing XRD facility. Thanks are also due to Dr. Sridhar Reddy, SV University, for extending SEM and Raman spectrum recording facilities.


  1. 1.
    Armand M (1994) The history of polymer electrolytes. Solid State Ionics 69:309–319CrossRefGoogle Scholar
  2. 2.
    Mac Callum JR, Vincent CA (1987) Polymer electrolytes reviews I and II. Elsevier Applied Science, AmsterdamGoogle Scholar
  3. 3.
    Ratner MA, Shriver DF (1988) Ion transport in solvent-free polymers. Chem Rev 88:109–124CrossRefGoogle Scholar
  4. 4.
    Koh Sing N, Ramesh S, Ramesh K, Joon Ching J (2016) A review of polymer electrolytes: fundamentals, approaches and applications. Ionics 22:1259–1279CrossRefGoogle Scholar
  5. 5.
    Itoh T, Miyamura Y, Ichikawa Y, Uno T, Kubo M, Yamamoto O (2003) Composite polymer electrolytes of poly (ethylene oxide)/BaTiO3/Li salt with hyper branched polymer. J Power Sources 121:403–408CrossRefGoogle Scholar
  6. 6.
    Lightfoot P, Mehta MA, Bruce PG (1993) Crystal structure of the polymer electrolyte poly (ethylene oxide):LiCF3SO3. Science 262:883–897CrossRefGoogle Scholar
  7. 7.
    Gray FM (1997) Polymer electrolytes. The Royal Society of Chemistry, CambridgeGoogle Scholar
  8. 8.
    Shriver DF, Papke BL, Ratner MA, Dupon R, Wong T, Brodwin M (1983) Structure and ion transportation in polymer salt complexes. Solid State Ionics 5:83–88CrossRefGoogle Scholar
  9. 9.
    Berthier C, Gorecki W, Minier M, Armand MB, Chabagno JM, Rigaud P (1983) Microscopic investigation of ionic conductivity in alkali metal salts-poly(ethylene oxide) adducts. Solid State Ionics 11:91–95CrossRefGoogle Scholar
  10. 10.
    Praveen D, Bhat SV, Damle R (2011) Enhanced ionic conductivity in nano-composite solid polymer electrolyte:(PEG)xLiBr:y(SiO2). Ionics 17:21–27CrossRefGoogle Scholar
  11. 11.
    Papke BL, Ratner MA, Shiver DF (1981) Vibrational spectroscopy and structure of polymer electrolytes, poly (ethylene oxide) complexes of alkali metal salts. J Phys Chem Solids 42:493–500CrossRefGoogle Scholar
  12. 12.
    Kiran Kumar K, Ravi M, Pavani Y, Sharma AK, Narasimha Rao VVR (2014) Investigations on PEO/PVP/NaBr complexed polymer blend electrolytes for electrochemical cell applications. J Membr Sci 454:200–211CrossRefGoogle Scholar
  13. 13.
    Praveen D, Bhat SV, Damle R (2013) Role of silica nanoparticles in conductivity enhancement of nanocomposite solid polymer electrolytes. Ionics 19:1375–1379CrossRefGoogle Scholar
  14. 14.
    Saumya R, Mohapatra, Awalendra K, Thakur R, Choudhary RNP (2008) Studies on PEO-based sodium ion conducting composite polymer films. Ionics 14:255–262CrossRefGoogle Scholar
  15. 15.
    Hashmi SA, Chandra S (1995) Experimental investigations on a sodium-ion-conducting polymer electrolyte based on poly (ethylene oxide) complexed with NaPF6. Mater Sci Eng B 34:18–26CrossRefGoogle Scholar
  16. 16.
    Chandrasekaran R, Sathiyamoorthi R, Selladurai S (2009) Role of composite MnO2 cathode on electrochemical cells based on polymer electrolyte (PEO/NaClO3). Ionics 15:703–710CrossRefGoogle Scholar
  17. 17.
    Dey A, Das K, Karan S, De SK (2011) Vibrational spectroscopy and ionic conductivity of polyethylene oxide–NaClO4–CuO nanocomposite. Spectrochim Acta A 83:384–391CrossRefGoogle Scholar
  18. 18.
    Patel M, Chandrappa KG, Bhattacharyya AJ (2010) Increasing ionic conductivity of polymer–sodium salt complex by addition of a non-ionic plastic crystal. Solid State Ionics 181:844–848CrossRefGoogle Scholar
  19. 19.
    Serra Moreno J, Armand M, Berman MB, Greenbaum SC, Scrosati B, Panero S (2014) Composite PEOn:NaTFSI polymer electrolyte: preparation, thermal and electrochemical characterization. J Power Sources 248:695–702CrossRefGoogle Scholar
  20. 20.
    Lightfoot P, Mehta MA, Bruce PG (1992) Structure of the poly (ethy1ene oxide)-sodium perchlorate complex PEO:NaCIO4, from powder X-ray diffraction data. J Mater Chem 2(4):379–381CrossRefGoogle Scholar
  21. 21.
    Munshi MZA, Owens BB (1988) Ionic transport in poly(ethylene oxide) (PEO)-LiX polymeric solid electrolyte. Polym J 20(7):577–586CrossRefGoogle Scholar
  22. 22.
    Fergus JW (2012) Ion transport in sodium ion conducting solid electrolytes. Solid State Ionics 227:96–102CrossRefGoogle Scholar
  23. 23.
    Watanabe M, Nishimoto A (1995) Effects of network structures and incorporated salt species on electrochemical properties of polyether-based polymer electrolytes. Solid State Ionics 79:306–312CrossRefGoogle Scholar
  24. 24.
    Nishimoto A, Agehara K, Furuya N, Watanabe T, Watanabe M (1999) High ionic conductivity of polyether-based network polymer electrolytes with hyper branched side chains. Macromolecules 32:1541–1548CrossRefGoogle Scholar
  25. 25.
    Tominaga Y, Yamazaki K, Nanthana (2014) Effect of anions on Lithium ion conduction in poly(ethylene carbonate)-based polymer electrolytes. ECS Trans 62(1):151–157CrossRefGoogle Scholar
  26. 26.
    Gadjourova Z, David M, Marero KH, Andersen (2001) Structures of the polymer electrolyte complexes PEO6:LiXF6 (X = P, Sb), determined from neutron powder diffraction data. Chem Mater 13:1282–1285CrossRefGoogle Scholar
  27. 27.
    Glashan GSM, Andreev YG, Bruce PG (1999) Structure of the polymer electrolyte poly(ethylene oxide)6:LiAsF6. Nature 398:792–794CrossRefGoogle Scholar
  28. 28.
    Das S, Ghosh A (2015) Ionic conductivity and dielectric permittivity of PEO-LiClO4 solid polymer electrolyte plasticized with propylene carbonate. AIP Adv 5:027125CrossRefGoogle Scholar
  29. 29.
    Angulakshmia N, Nahma KS, Nairb JR, Gerbaldib C, Bongiovannib R, Penazzib P, Manuel Stephan A (2013) Cycling profile of MgAl2O4-incorporated composite electrolytes composed of PEO and LiPF6 for lithium polymer batteries. Electrochim Acta 90:179–185CrossRefGoogle Scholar
  30. 30.
    Fahmi EM, Ahmad A, Nazeri NNM, Hamzah H, Razali H, Rahman MYA (2012) Effect of LiBF4 salt concentration on the properties of poly(ethylene oxide)-based composite polymer electrolyte. Int J Electrochem Sci 7:5798–5804Google Scholar
  31. 31.
    Karan NK, Pradhan DK, Thomas R, Natesan B, Katiyar RS (2008) Solid polymer electrolytes based on polyethylene oxide and lithium trifluoro- methane sulfonate (PEO–LiCF3SO3): ionic conductivity and dielectric relaxation. Solid State Ionics 179:689–696CrossRefGoogle Scholar
  32. 32.
    Das S, Ghosh A (2015) Ion conduction and relaxation in PEO-LiTFSI-Al2O3 polymer nanocomposite electrolytes. J Appl Phys 117:174103CrossRefGoogle Scholar
  33. 33.
    Sangamithra C, Frech R (1996) Effect of plasticizers on high molecular weight PEO-LiCF3SO3 complexes. Solid State Ionics 86:341–346Google Scholar
  34. 34.
    Vignarooban K, Dissanayake MAKL, Albinsson I, Mellander BE (2014) Effect of TiO2 nano-filler and EC plasticizer on electrical and thermal properties of poly(ethylene oxide) (PEO) based solid polymer electrolytes. Solid State Ionics 266:25–28CrossRefGoogle Scholar
  35. 35.
    Maccallum JR, Smith MJ, Vincent CA (1984) The effects of radiation-induced cross linking on the conductance of LiClO4: PEO electrolytes. Solid State Ionics 11:307–312CrossRefGoogle Scholar
  36. 36.
    Nanda P, De SK, Manna S, De U, Tarafdar S (2010) Effect of gamma irradiation on a polymer electrolyte: variation in crystallinity, viscosity and ion-conductivity with dose. Nucl Inst Methods Phys Res B 268:73–78 (Which Journal?)CrossRefGoogle Scholar
  37. 37.
    Ueno M, Imanishi N, Hanai K, Kobayashi T, Hirano A, Yamamoto O, Takeda Y (2011) Electrochemical properties of cross-linked polymer electrolyte by electron beam irradiation and application to lithium ion batteries. J Power Sources 196:4756–4761CrossRefGoogle Scholar
  38. 38.
    Kumar A, Deka M, Banerjee S (2010) Enhanced ionic conductivity in oxygen ion irradiated poly(vinylidenefluoride-hexafluoropropylene) based nanocomposite gel polymer electrolytes. Solid State Ionics 181:609–615CrossRefGoogle Scholar
  39. 39.
    Prajapati GK, Gupta PN (2014) 50 MeV Li3+ ion irradiation effect on structural, electrical, and dielectric properties of PVA-based nanocomposite polymer electrolytes. Ionics 20:37–44CrossRefGoogle Scholar
  40. 40.
    Maitra M, Verma KC, Sinha M, Kumar R, Middya TR, Tarafdar R, Sen P, Bandyopadhyay SK, Udayan D (2006) DSC characterization of ion beam modifications in ion conducting PEO-salt polymers. Nucl Instr Meth Phys Res B 244:239–242 (Which Journal?)CrossRefGoogle Scholar
  41. 41.
    Singh D, Singh PK, Bhattacharya B (2016) Ion irradiation on polymer electrolyte films: comparative study on conductivity. High Perform Polym 28:1–5. CrossRefGoogle Scholar
  42. 42.
    Kanjilal D, Madhu T, Rodrigues GO, Rao UK, Safvan CP, Rao A (2001) Development of low energy ion beam facility at NSC. Ind J Pure Appl Phys 39:25–28Google Scholar
  43. 43.
    Macdonald JR (1987) Impedance spectroscopy. Wiley, SwitzerlandGoogle Scholar
  44. 44.
    Kakihana M, Schantz S, Torell LM (1990) Ion pairing effects in poly (propylene glycol)–salt complexes as a function of molecular weight and temperature: a Raman scattering study using NaCF3SO3 and LiClO4. J Chem Phys 92:6271–6283CrossRefGoogle Scholar
  45. 45.
    Popok VN (2012) Ion implantation of polymers: formation of nanoparticulate materials. Rev Adv Mater Sci 30:1–21Google Scholar
  46. 46.
    Joyjit C, Marisa K, Andreas H (2015) Dependence of ion dynamics on the polymer chain length in poly (ethylene oxide)-based polymer electrolytes. J Phys Chem B 119:6786–6791CrossRefGoogle Scholar
  47. 47.
    Karmakar A, Ghosh A (2012) Dielectric permittivity and electric modulus of polyethylene oxide (PEO)–LiClO4 composite electrolytes. Curr Appl Phys 12:539–543CrossRefGoogle Scholar
  48. 48.
    Nath AK, Kumar A (2014) Scaling of AC conductivity, electrochemical and thermal properties of ionic liquid based polymer nanocomposite electrolytes. Electrochim Acta 129:177–186CrossRefGoogle Scholar
  49. 49.
    Sengwa RJ, Sankhla S, Choudhary S (2010) Effect of melt compounding temperature on dielectric relaxation and ionic conduction in PEOx(NaClO4)yMMT nanocomposite electrolytes. Ionics 6:697–707CrossRefGoogle Scholar
  50. 50.
    Sengwa RJ, Dhatarwal P, Choudhary S (2014) Role of preparation methods on the structural and dielectric properties of plasticized polymer blend electrolytes: correlation between ionic conductivity and dielectric parameters. Electrochim Acta 142:359–370CrossRefGoogle Scholar
  51. 51.
    Jonscher AK (1983) Dielectric relaxation in solids. Chelsea Dielectric Press, LondonGoogle Scholar
  52. 52.
    Armand MB, Chabagno JM, Duclot MJ (1978) Abstract 6.5. Extended Abstracts. 2nd Int conf Solid Electrolytes. St. Andrews, ScotlandGoogle Scholar
  53. 53.
    Steven JP, Malcolm DI, Funke K, Anita JH (2005) Free volume and conductivity in polymer electrolytes. Electrochim Acta 50:3955–3962CrossRefGoogle Scholar
  54. 54.
    Porto AO, Goulart Silva G, Magalhaes WF (1999) Free volume-size dependence on temperature and average molecular-weight in poly(ethylene oxide) determined by positron annihilation lifetime spectroscopy. J Polym Sci B 37:219–226CrossRefGoogle Scholar
  55. 55.
    Hashmi S, Kumar A, Maurya K, Chandra S (1990) Proton-conducting polymer electrolyte. I. Polyethylene oxide + NH4ClO4 system. J Phys D 23:1307–1316CrossRefGoogle Scholar
  56. 56.
    Jiang Y, Xu J, Zhuang Q, Jin L, Sun S (2008) A novel PEO-based composite solid state polymer electrolyte with methyl group-functionalized SBA-15 filler for rechargeable lithium batteries. J Sol St Electrochem 12:353–362CrossRefGoogle Scholar
  57. 57.
    Sanaz K, Keryn L (2013) Effect of SiO2 on conductivity and structural properties of PEO–EMIHSO4 polymer electrolyte and enabled solid electrochemical capacitors. Electrochim Acta 103:174–178CrossRefGoogle Scholar
  58. 58.
    Suriani I, Mariah MY, Roslina A, Mohd RJ (2011) Effects of various LiPF6 salt concentrations on PEO-based solid polymer electrolytes. Ionics 17:399–405CrossRefGoogle Scholar
  59. 59.
    Kumar M, Sekhon SS (2002) Role of plasticizer’s dielectric constant on conductivity modification of PEO-NH4F polymer electrolytes. Eur Polym J 38:1297–1304CrossRefGoogle Scholar
  60. 60.
    Reddeppa N, Sharma AK, Narasimha Rao VVR, Chen W (2014) AC conduction mechanism and battery discharge characteristics of (PVC/PEO) poly blend films complexed with potassium chloride. Ionics 47:33–41Google Scholar
  61. 61.
    Wen SJ, Richardson TJ, Ghantous DI, Striebel KA, Ross PN, Cairns EJ (1996) FTIR characterization of PEO + LiN (CF3SO2)2electrolytes. J Electroanal Chem 408:113–118CrossRefGoogle Scholar
  62. 62.
    Snyder RG, Wunder SL (1986) Long-range conformational structure and low- frequency isotropic Raman spectra of some highly disordered chain molecule. Macromolecules 19:496–498CrossRefGoogle Scholar
  63. 63.
    Schantz S, Torrel LM, Stevens JR (1988) Raman and brillouin scattering of LiClO4 complexed in poly(propylene-glycol). J Appl Phys 64:2038–2047CrossRefGoogle Scholar
  64. 64.
    Caruso T, Capoleoni S, Cazzanelli E, Agostino RG, Villano P, Passerini S (2002) Characterization of PEO-lithium triflate polymer electrolytes: conductivity, DSC and Raman investigations. Ionics 8:36–43CrossRefGoogle Scholar
  65. 65.
    Yang X, Su Z, Wu D, Hsu SL, Stidham HD (1997) Raman analysis of a conformational distribution of poly(ethylene oxide) and its model compound in the liquid state. Macromolecules 30:3796–3802CrossRefGoogle Scholar
  66. 66.
    Kim CS, Oh SM (2000) Importance of donor number in determining solvating ability of polymers and transport properties in gel-type polymer electrolytes. Electrochim Acta 45:2101–2109CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • H. Manjunatha
    • 1
  • R. Damle
    • 2
  • Kumar Pravin
    • 3
  • G. N. Kumaraswamy
    • 1
    Email author
  1. 1.Department of PhysicsAmrita School of Engineering, Amrita Vishwa VidyapeethamBengaluruIndia
  2. 2.Department of PhysicsBangalore UniversityBengaluruIndia
  3. 3.Inter-University Accelerator CentreNew DelhiIndia

Personalised recommendations