, Volume 24, Issue 10, pp 3227–3235 | Cite as

Plumage-like MnO2@NiCo2O4 core–shell architectures for high-efficiency energy storage: the synergistic effect of ultralong MnO2 “scaffold” and ultrathin NiCo2O4 “fluff”

  • Li Su
  • Liyin Hou
  • Shuanlong Di
  • Jianning Zhang
  • Xiujuan QinEmail author
Original Paper


Here, we proposed a rational design of a plumage-like MnO2@NiCo2O4 core–shell architecture by a mild hydrothermal and chemical bath deposition method. The hierarchical structure comprises the stable “scaffold” of the MnO2 nanowires and the high-activity “fluff” of ultrathin NiCo2O4 nanosheets. Besides, considering the cost of nickel and cobalt elements, the content of NiCo2O4 was controlled within 50% in our design. The ideal MnO2@NiCo2O4-8h electrode achieved remarkable electrochemical performances with high specific capacity of 618.0 C g−1 at 1 A g−1, outstanding rate capability of 89% from 1 to 10 A g−1, and superior cycling stability of 71% after 5000 cycles. Furthermore, the synergy capacitance was also evaluated to be 360.7 C g−1 with a synergy efficiency of 58%. The smart design is suitable for constructing advanced electrode material for high-performance supercapacitor.


MnO2@NiCo2O4 Core–shell Synergy effects Supercapacitor 


Funding information

We are grateful for the financial support from the Natural Science Foundation of China (51674221, 51704261) and the Natural Science Foundation of Hebei Province (B2018203330, B2018203360).


  1. 1.
    Zhang GQ, Wu HB, Hoster HE, Chanpark MB, Lou XW (2012) Single-crystalline NiCo2O4 nanoneedle arrays grown on conductive substrates as binder-free electrodes for high-performance supercapacitors. Energy Environ Sci 5:9453–9456CrossRefGoogle Scholar
  2. 2.
    Yang P, Ding Y, Lin Z, Chen Z, Li Y, Qiang P, Ebrahimi M, Mai W, Wong CP, Wang ZL (2014) Low-cost high-performance solid-state asymmetric supercapacitors based on MnO2 nanowires and Fe2O3 nanotubes. Nano Lett 14:731–736CrossRefGoogle Scholar
  3. 3.
    Wang L, Li Y, Xia M, Li Z, Chen Z, Ma Z, Qin X, Shao G (2017) Ni nanoparticles supported on graphene layers: an excellent 3D electrode for hydrogen evolution reaction in alkaline solution. J Power Sources 347:220–228CrossRefGoogle Scholar
  4. 4.
    Kim BC, Hong JY, Wallace GG, Park HS (2016) Flexible electronics: recent progress in flexible electrochemical capacitors: electrode materials, device configuration, and functions. Adv Energy Mater 5. CrossRefGoogle Scholar
  5. 5.
    Yang W, Yang W, Song A, Sun G, Shao G (2017) 3D interconnected porous carbon nanosheet/carbon nanotube as polysulfides reservoir for high performance lithium-sulfur batteries. Nano 10:816–824. CrossRefGoogle Scholar
  6. 6.
    Liu ZQ, Chen GF, Zhou PL, Li N, Su YZ (2016) Building layered NixCo2x (OH)6x nanosheets decorated three-dimensional Ni frameworks for electrochemical applications. J Power Sources 317:1–9CrossRefGoogle Scholar
  7. 7.
    Zhang R, Xing R, Jiao T, Ma K, Chen C, Ma G, Yan X (2016) Carrier-free, chemophotodynamic dual nanodrugs via self-assembly for synergistic antitumor therapy. ACS Appl Mater Interfaces 8:13262–13269CrossRefGoogle Scholar
  8. 8.
    Yin X, Sun G, Song A, Wang L, Wang Y, Dong H, Shao G (2017) A novel structure of Ni-(MoS2 /GO) composite coatings deposited on Ni foam under supergravity field as efficient hydrogen evolution reaction catalysts in alkaline solution. Electrochim Acta 249:52–63CrossRefGoogle Scholar
  9. 9.
    Xia H, Hong C, Li B, Zhao B, Lin Z, Zheng M, Savilov SV, Aldoshin SM (2015) Facile synthesis of hematite quantum-dot/functionalized graphene-sheet composites as advanced anode materials for asymmetric supercapacitors. Adv Funct Mater 25:627–635CrossRefGoogle Scholar
  10. 10.
    Choi KM, Jeong HM, Park JH, Zhang YB, Kang JK, Yaghi OM (2014) Supercapacitors of nanocrystalline metal-organic frameworks. ACS Nano 8:7451–7457CrossRefGoogle Scholar
  11. 11.
    Yang W, Yang W, Kong L, Song A, Qin X, Shao G (2018) Phosphorus-doped 3D hierarchical porous carbon for high-performance supercapacitors: a balanced strategy for pore structure and chemical composition. Carbon 127:557–567CrossRefGoogle Scholar
  12. 12.
    Zhao H, Zhou M, Wen L, Lei Y (2015) Template-directed construction of nanostructure arrays for highly-efficient energy storage and conversion. Nano Energy 13:790–813CrossRefGoogle Scholar
  13. 13.
    Zhang Q, Li Y, Yang Q, Chen H, Chen X, Jiao T, Peng Q (2017) Distinguished Cr(VI) capture with rapid and superior capability using polydopamine microsphere: behavior and mechanism. J Hazard Mater 342:732–740CrossRefGoogle Scholar
  14. 14.
    Xu K, Yang J, Hu J (2018) Synthesis of hollow NiCo2O4 nanospheres with large specific surface area for asymmetric supercapacitors. J Colloid Interface Sci 511:456–462CrossRefGoogle Scholar
  15. 15.
    Chen LF, Lu Y, Yu L, Lou XW (2017) Designed formation of hollow particle-based nitrogen-doped carbon nanofibers for high-performance supercapacitors. Energy Environ Sci 10:1777–1783CrossRefGoogle Scholar
  16. 16.
    Lu Y, Li L, Chen D, Shen G (2017) Nanowire-assembled Co3O4@NiCo2O4 architectures for high performance all-solid-state asymmetric supercapacitors. J Mater Chem A 5:24981–24988CrossRefGoogle Scholar
  17. 17.
    Bu YG, Kushima A, Le Y, Li S, Ju L, Xiong WL (2017) Coordination polymers derived general synthesis of multishelled mixed metal-oxide particles for hybrid supercapacitors. Adv Mater 29:1605902CrossRefGoogle Scholar
  18. 18.
    Alrubaye S, Rajagopalan R, Dou SX, Cheng ZX (2017) Facile synthesis of reduced graphene oxide wrapped porous NiCo2O4 composite with superior performance as an electrode material for supercapacitors. J Mater Chem A 5:18989–18997CrossRefGoogle Scholar
  19. 19.
    Wang J, Zhong HX, Qin YL, Zhang XB (2013) An efficient three-dimensional oxygen evolution electrode. Angew Chem 52:5248–5253CrossRefGoogle Scholar
  20. 20.
    Su L, Gao L, Du Q, Hou L, Yin X, Feng M, Yang W, Ma Z, Shao G (2017) Formation of micron-sized nickel cobalt sulfide solid spheres with high tap density for enhancing pseudocapacitive properties. ACS Sustain Chem Eng 5:9945–9954CrossRefGoogle Scholar
  21. 21.
    Lee J, Dong HS, Jang J (2015) Polypyrrole-coated manganese dioxide with multiscale architectures for ultrahigh capacity energy storage. Energy Environ Sci 8:3030–3039CrossRefGoogle Scholar
  22. 22.
    Chen C, Yan D, Luo X, Gao W, Huang G, Han Z, Zeng Y, Zhu Z (2018) Construction of core-shell NiMoO4@Ni-Co-S nanorods as advanced electrodes for high-performance asymmetric supercapacitors. ACS Appl Mater Interfaces. CrossRefGoogle Scholar
  23. 23.
    Zuo W, Xie C, Xu P, Li Y, Liu J (2017) A novel phase-transformation activation process toward Ni-Mn-O nanoprism arrays for 2.4 V ultrahigh-voltage aqueous supercapacitors. Adv Mater. CrossRefGoogle Scholar
  24. 24.
    Yan D, Wang W, Luo X, Chen C, Zeng Y, Zhu Z (2018) NiCo2O4 with oxygen vacancies as better performance electrode material for supercapacitor. Chem Eng J 334:864–872CrossRefGoogle Scholar
  25. 25.
    Wei X, Gao Y, Xu W, Xuan H, Lan D, Chen Y, Pu X, Yan Z, Su J, Zhu Z (2014) Composite of macroporous carbon with honeycomb-like structure from mollusc shell and NiCo2O4 nanowires for high-performance supercapacitor. ACS Appl Mater Interfaces 6:19416–19423CrossRefGoogle Scholar
  26. 26.
    Li Q, Wang ZL, Li GR, Guo R, Ding LX, Tong YX (2012) Design and synthesis of MnO2/Mn/MnO2 sandwich-structured nanotube arrays with high supercapacitive performance for electrochemical energy storage. Nano Lett 12:3803–3807CrossRefGoogle Scholar
  27. 27.
    Tang C, Yin X, Gong H (2013) Superior performance asymmetric supercapacitors based on a directly grown commercial mass 3D Co3O4@Ni(OH)2 core–shell electrode. ACS Appl Mater Interfaces 5:10574–10582CrossRefGoogle Scholar
  28. 28.
    Lu Q (2011) Supercapacitor electrodes with high-energy and power densities prepared from monolithic NiO/Ni nanocomposite. Angew Chem 50:6847–6850CrossRefGoogle Scholar
  29. 29.
    Kong D, Luo J, Wang Y, Ren W, Yu T, Luo Y, Yang Y, Cheng C (2014) Three-dimensional Co3O4@MnO2 hierarchical nanoneedle arrays: morphology control and electrochemical energy storage. Adv Funct Mater 24:3815–3826CrossRefGoogle Scholar
  30. 30.
    Yu L, Zhang G, Yuan C, Lou XW (2013) Hierarchical NiCo2O4@MnO2 core-shell heterostructured nanowire arrays on Ni foam as high-performance supercapacitor electrodes. Chem Commun 49:137–139CrossRefGoogle Scholar
  31. 31.
    Liu J, Jiang J, Cheng C, Li H, Zhang J, Gong H, Fan HJ (2011) Co3O4 nanowire@MnO2 ultrathin nanosheet core/shell arrays: a new class of high-performance pseudocapacitive materials. Adv Mater 23:2076–2081CrossRefGoogle Scholar
  32. 32.
    Xia H, Zhu D, Luo Z, Yu Y, Shi X, Yuan G, Xie J (2013) Hierarchically structured Co3O4@Pt@MnO2 nanowire arrays for high-performance supercapacitors. Sci Rep 3:2978CrossRefGoogle Scholar
  33. 33.
    Reddy ALM, Shaijumon MM, Gowda SR, Ajayan PM (2009) Coaxial MnO2/carbon nanotube array electrodes for high-performance lithium batteries. Nano Lett 9:1002–1006CrossRefGoogle Scholar
  34. 34.
    Yang W, Gao Z, Ma J, Zhang X, Wang J, Liu J (2013) Hierarchical NiCo2O4@NiO core–shell hetero-structured nanowire arrays on carbon cloth for a high-performance flexible all-solid-state electrochemical capacitor. J Mater Chem A 2:1448–1457CrossRefGoogle Scholar
  35. 35.
    Wu ZS, Ren W, Wang DW, Li F, Liu B, Cheng HM (2010) High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors. ACS Nano 4:5835–5842CrossRefGoogle Scholar
  36. 36.
    Duay J, Sherrill SA, Zhe G, Gillette E, Sang BL (2013) Self-limiting electrodeposition of hierarchical MnO2 and M(OH)2/MnO2 nanofibril/nanowires: mechanism and supercapacitor properties. ACS Nano 7:1200–1214CrossRefGoogle Scholar
  37. 37.
    Zhang Z, Bao F, Zhang Y, Feng L, Ji Y, Zhang H, Sun Q, Feng S, Zhao X, Liu X (2015) Formation of hierarchical CoMoO4 @MnO2 core–shell nanosheet arrays on nickel foam with markedly enhanced pseudocapacitive properties. J Power Sources 296:162–168CrossRefGoogle Scholar
  38. 38.
    Du Q, Su L, Hou L, Sun G, Feng M, Yin X, Ma Z, Shao G, Gao W (2018) Rationally designed ultrathin Ni-Al layered double hydroxide and graphene heterostructure for high-performance asymmetric supercapacitor. J Alloys Compd 740:1051–1059CrossRefGoogle Scholar
  39. 39.
    Xu K, Li W, Liu Q, Li B, Liu X, An L, Chen Z, Zou R, Hu J (2014) Hierarchical mesoporous NiCo2O4@MnO2 core–shell nanowire arrays on nickel foam for aqueous asymmetric supercapacitors. J Mater Chem A 2:4795–4802CrossRefGoogle Scholar
  40. 40.
    Yuan C, Li J, Hou L, Zhang X, Shen L, Lou XW (2012) Ultrathin mesoporous NiCo2O4 nanosheets supported on Ni foam as advanced electrodes for supercapacitors. Adv Funct Mater 22:4592–4597CrossRefGoogle Scholar
  41. 41.
    Chen H, Hu L, Chen M, Yan Y, Wu L (2014) Nickel–cobalt layered double hydroxide nanosheets for high-performance supercapacitor electrode materials. Adv Funct Mater 24:934–942CrossRefGoogle Scholar
  42. 42.
    Ma Z, Shao G, Fan Y, Wang G, Song J, Shen D (2016) Construction of hierarchical α-MnO2 nanowires@ ultrathin δ-MnO2 nanosheets core-shell nanostructure with excellent cycling stability for high-power asymmetric supercapacitor electrodes. ACS Appl Mater Interfaces 8:9050–9058CrossRefGoogle Scholar
  43. 43.
    Zhang X, Yu P, Zhang H, Zhang D, Sun X, Ma Y (2013) Rapid hydrothermal synthesis of hierarchical nanostructures assembled from ultrathin birnessite-type MnO2 nanosheets for supercapacitor applications. Electrochim Acta 89:523–529CrossRefGoogle Scholar
  44. 44.
    Deng F, Tie J, Lan B, Sun M, Peng S, Deng S, Li B, Sun W, Yu L (2015) NiCo 2O4/MnO2 heterostructured nanosheet: influence of preparation conditions on its electrochemical properties. Electrochim Acta 176:359–368CrossRefGoogle Scholar
  45. 45.
    Wang HY, Xiao FX, Yu L, Liu B, Lou XW (2014) Hierarchical α-MnO2 nanowires@Ni1-xMnxOy nanoflakes core–shell nanostructures for supercapacitors. Small 10:3181–3186CrossRefGoogle Scholar
  46. 46.
    Zhang G, Lou XW (2013) General solution growth of mesoporous NiCo2O4 nanosheets on various conductive substrates as high-performance electrodes for supercapacitors. Adv Mater 25:976–979CrossRefGoogle Scholar
  47. 47.
    Grote F, Kühnel RS, Balducci A, Lei Y (2014) Template assisted fabrication of free-standing MnO2 nanotube and nanowire arrays and their application in supercapacitors. Appl Phys Letters 104:053904CrossRefGoogle Scholar
  48. 48.
    Kang J, Hirata A, Kang L, Zhang X, Hou Y, Chen L, Li C, Fujita T, Akagi K, Chen M (2013) Enhanced supercapacitor performance of MnO2 by atomic doping. Angew Chem 52:1664–1667CrossRefGoogle Scholar
  49. 49.
    Ai Y, Geng X, Lou Z, Wang ZM, Shen G (2015) Rational synthesis of branched CoMoO4@CoNiO2 core/shell nanowire arrays for all-solid-state supercapacitors with improved performance. ACS Appl Mater Interfaces 7:24204–24211CrossRefGoogle Scholar
  50. 50.
    Zhao Y, Hu L, Zhao S, Wu L (2016) Preparation of MnCo2O4@Ni(OH)2 core–shell flowers for asymmetric supercapacitor materials with ultrahigh specific capacitance. Adv Funct Mater 26:4085–4093CrossRefGoogle Scholar
  51. 51.
    Li Y, Zhang Y, Li Y, Wang Z, Fu H, Zhang X, Chen Y, Zhang H, Li X (2014) Unveiling the dynamic capacitive storage mechanism of Co3O4@NiCo2O4 hybrid nanoelectrodes for supercapacitor applications. Electrochim Acta 145:177–184CrossRefGoogle Scholar
  52. 52.
    Liu X, Shi S, Xiong Q, Li L, Zhang Y, Tang H, Gu C, Wang X, Tu J (2013) Hierarchical NiCo2O4@NiCo2O4 core/shell nanoflake arrays as high-performance supercapacitor materials. ACS Appl Mater Interfaces 5:8790–8795CrossRefGoogle Scholar
  53. 53.
    Yu D, Wu B, Ran J, Ge L, Wu L, Wang H, Xu T (2016) An ordered ZIF-8-derived layered double hydroxide hollow nanoparticles-nanoflake array for high efficiency energy storage. J Mater Chem A 4:16953–16960CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Li Su
    • 1
    • 2
  • Liyin Hou
    • 1
  • Shuanlong Di
    • 1
  • Jianning Zhang
    • 1
  • Xiujuan Qin
    • 1
    • 2
    Email author
  1. 1.Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical EngineeringYanshan UniversityQinhuangdaoChina
  2. 2.State Key Laboratory of Metastable Materials Science and TechnologyYanshan UniversityQinhuangdaoChina

Personalised recommendations