, Volume 24, Issue 10, pp 3101–3111 | Cite as

Comparative study on the hydrogen storage capacity of crystalline and amorphous nanomaterials of MoO3: effect of a catalytic Pd capping

  • S. Rojas
  • Martín Roble
  • J. O. Morales-Ferreiro
  • D.E. Diaz-DroguettEmail author
Original Paper


Hydrogen storage capacities were investigated for two forms of MoO3 nanomaterial, amorphous of low crystallinity, and other highly crystalline, using the quartz crystal microbalance technique. Effect of a catalytic Pd capping on the nanomaterials was evaluated. MoO3 materials were grown using the gas condensation method, and both the amorphous and crystalline samples were composed of orthorhombic phases with Mo6+ oxidation state. For 4-min measurements, uncapped amorphous MoO3 achieved a higher storage capacity than its crystalline counterpart, while Pd-capped samples exhibited lower values due to slower kinetics. Then, Pd-capped samples were measured using longer H2 exposure times of 30 min, finding that Pd-capped crystalline MoO3 sample exhibited higher hydrogen storage capacity than its amorphous counterpart. Pd capping was found to affect the hydrogenation of the underlying oxide layer, mainly due to differences in long-range order and layered structure between crystalline and amorphous MoO3 samples.


Molybdenum oxide Gas condensation Hydrogen storage Pd capping Microbalance 


  1. 1.
    Nakagawa H, Yamamoto N, Okazaki S, Chinzei T, Asakura S (2003) A room-temperature operated hydrogen leak sensor. Sensors Actuators B Chem 93(1):468–474CrossRefGoogle Scholar
  2. 2.
    Yaacob MH, Breedon M, Kalantar-Zadeh K, Wlodarski W (2009) Absorption spectral response of nanotextured WO3 thin films with Pt catalyst towards H2. Sensors Actuators B Chem 137(1):115–120CrossRefGoogle Scholar
  3. 3.
    El Far R, Diaz-Droguett DE, Rojas S, Avila JI, Romero CP, Lievens P, Cabrera AL (2012) Quantitative determination of hydrogen absorption by Pd cluster-assembled films using a quartz crystal microbalance. Thin Solid Films 522:199–203CrossRefGoogle Scholar
  4. 4.
    Michalak WD, Miller JB, Alfonso DR, Gellman AJ (2012) Uptake, transport, and release of hydrogen from Pd (100). Surf Sci 606(3):146–155CrossRefGoogle Scholar
  5. 5.
    Tylianakis E, Dimitrakakis GK, Martin-Martinez FJ, Melchor S, Dobado JA, Klontzas E, Froudakis GE (2014) Designing novel nanoporous architectures of carbon nanotubes for hydrogen storage. Int J Hydrog Energy 39(18):9825–9829CrossRefGoogle Scholar
  6. 6.
    Dündar-Tekkaya E, Karatepe N (2014) Hydrogen adsorption of carbon nanotubes grown on different catalysts. Int J Hydrog Energy 40(24):7665–7670CrossRefGoogle Scholar
  7. 7.
    Jhi SH, Kwon YK (2004) Hydrogen adsorption on boron nitride nanotubes: a path to room-temperature hydrogen storage. Phys Rev B 69(24):245407CrossRefGoogle Scholar
  8. 8.
    Ao Z, Dou S, Xu Z, Jiang Q, Wang G (2014) Hydrogen storage in porous graphene with Al decoration. Int J Hydrog Energy 39(28):16244–16251CrossRefGoogle Scholar
  9. 9.
    Suraweera NS, Albert AA, Humble JR, Barnes CE, Keffer DJ (2014) Hydrogen adsorption and diffusion in amorphous, metal-decorated nanoporous silica. Int J Hydrog Energy 39(17):9241–9253CrossRefGoogle Scholar
  10. 10.
    Thomas KM (2007) Hydrogen adsorption and storage on porous materials. Catal Today 120(3):389–398CrossRefGoogle Scholar
  11. 11.
    Langmi HW, Walton A, Al-Mamouri MM, Johnson SR, Book D, Speight JD, Edqards PP, Gambesib I, Anderson PA, Harris IR (2003) Hydrogen adsorption in zeolites A, X, Y and RHO. J Alloys Compd 356:710–715CrossRefGoogle Scholar
  12. 12.
    Lin X, Telepeni I, Blake AJ, Dailly A, Brown CM, Simmons JM, Zoppi M, Walker GS, Thomas KM, Mays TJ, Hubberstey P, Champness NR, Schröder M (2009) High capacity hydrogen adsorption in Cu (II) tetracarboxylate framework materials: the role of pore size, ligand functionalization, and exposed metal sites. J Am Chem Soc 131(6):2159–2171CrossRefGoogle Scholar
  13. 13.
    Wang G, Yuan H, Kuang A, Hu W, Zhang G, Chen H (2014) High-capacity hydrogen storage in Li-decorated (AlN)n (n=12,24,36) nanocages. Int J Hydrog Energy 39(8):3780–3789CrossRefGoogle Scholar
  14. 14.
    Panella B, Hirscher M, Pütter H, Müller U (2006) Hydrogen adsorption in metal–organic frameworks: Cu-MOFs and Zn-MOFs compared. Adv Funct Mater 16(4):520–524CrossRefGoogle Scholar
  15. 15.
    Sekimoto S, Nakagawa H, Okazaki S, Fukuda K, Asakura S, Shigemori T, Takahashi S (2000) A fiber-optic evanescent-wave hydrogen gas sensor using palladium-supported tungsten oxide. Sensors Actuators B Chem 66(1):142–145CrossRefGoogle Scholar
  16. 16.
    Zhao M, Huang JX, Ong CW (2012) Room-temperature resistive H2 sensing response of Pd/WO3 nanocluster-based highly porous film. Nanotechnology 23(31):315503CrossRefGoogle Scholar
  17. 17.
    Okamoto Y, Oshima N, Kobayashi Y, Terasaki O, Kodaira T, Kubota T (2002) Structure of intrazeolite molybdenum oxide clusters and their catalysis of the oxidation of ethyl alcohol. Phys Chem Chem Phys 4(12):2852–2862CrossRefGoogle Scholar
  18. 18.
    Dadyburjor DB, Jewur SS, Ruckenstein E (1979) Selective oxidation of hydrocarbons on composite oxides. Catal Rev Sci Eng 19(2):293–350CrossRefGoogle Scholar
  19. 19.
    Larrubia MA, Ramis G, Busca G (2000) An FT-IR study of the adsorption of urea and ammonia over V2O5–MoO3–TiO2 SCR catalysts. Appl Catal B Environ 27(3):L145–L151CrossRefGoogle Scholar
  20. 20.
    Sunu SS, Prabhu E, Jayaraman V, Gnanasekar KI, Seshagiri TK, Gnanasekaran T (2004) Electrical conductivity and gas sensing properties of MoO 3. Sensors Actuators B Chem 101(1):161–174CrossRefGoogle Scholar
  21. 21.
    Yu J, Liu Y, Cai FX, Shafiei M, Chen G, Motta N, Wlodarski W, Kalantar-Zadeh K, Lai PT (2013) A comparison study on hydrogen sensing performance of Pt/MoO3 nanoplatelets coated with a thin layer of Ta2O5 or La2O3. In Nano/micro engineered and molecular systems (NEMS), 2013 8th IEEE International Conference on (pp. 191–194). IEEEGoogle Scholar
  22. 22.
    Zakharova GS, Podval’naya NV (2013) Bifunctional potentiometric sensor based on MoO3 nanorods. J Anal Chem 68(1):50–56CrossRefGoogle Scholar
  23. 23.
    Shafiei, M., Yu, J., Chen, G., Lai, P., Motta, N., & Kalantar-zadeh, K. (2012). Hydrogen sensing properties of Pt/Lanthanum oxide-molybdenum oxide nanoplatelet/SiC based Schottky diode. In Proceedings of the 14th International Meeting on Chemical Sensors-IMCS 2012 (pp. 802–805)Google Scholar
  24. 24.
    Wang L, Gao P, Bao D, Wang Y, Chen Y, Chang C, Li G, Yang P (2014) Synthesis of crystalline/amorphous core/shell MoO3 composites through a controlled dehydration route and their enhanced ethanol sensing properties. Cryst Growth Des 14(2):569–575CrossRefGoogle Scholar
  25. 25.
    Ramabhadran RO, Mann JE, Waller SE, Rothgeb DW, Jarrold CC, Raghavachari K (2013) New insights on photocatalytic H2 liberation from water using transition-metal oxides: lessons from cluster models of molybdenum and tungsten oxides. J Am Chem Soc 135(45):17039–17051CrossRefGoogle Scholar
  26. 26.
    Baniasadi E, Dincer I, Naterer GF (2013) Electrochemical analysis of seawater electrolysis with molybdenum-oxo catalysts. Int J Hydrog Energy 38(6):2589–2595CrossRefGoogle Scholar
  27. 27.
    Ma BJ, Kim JS, Choi CH, Woo SI (2013) Enhanced hydrogen generation from methanol aqueous solutions over Pt/MoO3/TiO2 under ultraviolet light. Int J Hydrog Energy 38(9):3582–3587CrossRefGoogle Scholar
  28. 28.
    Datta P, Rihko-Struckmann LK, Sundmacher K (2011) Influence of molybdenum on the stability of iron oxide materials for hydrogen production with cyclic water gas shift process. Mater Chem Phys 129(3):1089–1095CrossRefGoogle Scholar
  29. 29.
    Ma Y, Guan G, Shi C, Zhu A, Hao X, Wang Z, Kusakabe K, Abudula A (2014) Low-temperature steam reforming of methanol to produce hydrogen over various metal-doped molybdenum carbide catalysts. Int J Hydrog Energy 39(1):258–266CrossRefGoogle Scholar
  30. 30.
    Lapin NV, D’yankova NY (2013) Hydrogen evolution kinetics during transition metal oxide-catalyzed ammonia borane hydrolysis. Inorg Mater 49(10):975–979CrossRefGoogle Scholar
  31. 31.
    Aravind SSJ, Costa M, Pereira V, Mugweru A, Ramanujachary K, Vaden TD (2014) Molybdenum/graphene-based catalyst for hydrogen evolution reaction synthesized by a rapid photothermal method. Int J Hydrog Energy 39(22):11528–11536CrossRefGoogle Scholar
  32. 32.
    Waller SE, Jarrold CC (2014) RH and H2 production in reactions between R OH and small molybdenum oxide cluster anions. J Phys Chem A 118(37):8493–8504CrossRefGoogle Scholar
  33. 33.
    Hoang-Van C, Zegaoui O (1997) Studies of high surface area Pt/MoO3 and Pt/WO3 catalysts for selective hydrogenation reactions. II. Reactions of acrolein and allyl alcohol. Appl Catal A Gen 164(1):91–103CrossRefGoogle Scholar
  34. 34.
    Hoang-Van C, Zegaoui O (1995) Studies of high surface area PtMoO3 and PtWO3 catalysts for selective hydrogenation reactions I. Preparation and characterization of catalysts by X-ray diffraction, transmission electron microscopy, hydrogen consumption and carbon monoxide chemisorption. Appl Catal A Gen 130(1):89–103CrossRefGoogle Scholar
  35. 35.
    Sakagami H, Asano Y, Takahashi N, Matsuda T (2005) H2 reduction of hydrogen molybdenum bronze to porous molybdenum oxide and its catalytic properties for the conversions of pentane and propan-2-ol. Appl Catal A Gen 284(1):123–130CrossRefGoogle Scholar
  36. 36.
    Diaz-Droguett DE, Fuenzalida VM, Solórzano G (2008) Nanostructures of crystalline molybdenum trioxide grown by condensation in a carrier gas. J Nanosci Nanotechnol 8(11):5977–5984CrossRefGoogle Scholar
  37. 37.
    Diaz-Droguett DE, Fuenzalida VM (2010) One-step synthesis of MoO3 and MoO3-x nanostructures by condensation in gas: effect of the carrier gas. J Nanosci Nanotechnol 10(10):6694–6706CrossRefGoogle Scholar
  38. 38.
    Diaz-Droguett DE, Fuenzalida VM (2011) Gas effects on the chemical and structural characteristics of porous MoO3 and MoO3−x grown by vapor condensation in helium and hydrogen. Mater Chem Phys 126(1):82–90CrossRefGoogle Scholar
  39. 39.
    Diaz-Droguett DE, Zuñiga A, Solorzano G, Fuenzalida VM (2012) Electron beam-induced structural transformations of MoO3 and MoO3-x crystalline nanostructures. J Nanopart Res 14:679–687CrossRefGoogle Scholar
  40. 40.
    Diaz-Droguett DE, El Far R, Fuenzalida VM, Cabrera AL (2012) In situ-Raman studies on thermally induced structural changes of porous MoO3 prepared in vapor phase under He and H2. Mater Chem Phys 134(2–3):631–638CrossRefGoogle Scholar
  41. 41.
    Julien C, Yebka B, Nazri GA (1996) Temperature dependence of the vibrational modes of MoO3. Mater Sci Eng B 38(1):65–71CrossRefGoogle Scholar
  42. 42.
    Dieterle M, Weinberg G, Mestl G (2002) Raman spectroscopy of molybdenum oxides. Part I. Structural characterization of oxygen defects in MoO3−x by DR UV/VIS, Raman spectroscopy and X-ray diffraction. Phys Chem Chem Phys 4(5):812–821CrossRefGoogle Scholar
  43. 43.
    Camacho-López MA, Haro-Poniatowski E, Lartundo-Rojas L, Livage J, Julien CM (2006) Amorphous–crystalline transition studied in hydrated MoO3. Mater Sci Eng B 135(2):88–94CrossRefGoogle Scholar
  44. 44.
    Nazri GA, Julien C (1992) Far-infrared and Raman studies of orthorhombic MoO3 single crystal. Solid State Ionics 53(1):376–382CrossRefGoogle Scholar
  45. 45.
    Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases on multimolecular layers. J Am Chem Soc 60(2):309–319CrossRefGoogle Scholar
  46. 46.
    Sing K (1998) Adsorption method for the characterization of porous materials. Adv Colloid Interf Sci 76-77:3–11CrossRefGoogle Scholar
  47. 47.
    Edelstein AS, Cammarata RC, (1998) Nanomaterials: synthesis, properties and applications, ch. 3, Institute of Physics Publishing, BristolGoogle Scholar
  48. 48.
    Zhang N, Li L, Li G (2017) Nanosized amorphous tantalum oxide: a highly efficient photocatalyst for hydrogen evolution. Res Chem Intermed 43(9):5011–5024CrossRefGoogle Scholar
  49. 49.
    Madhu G, Biju V (2015) Nanostructured amorphous nickel oxide with enhanced antioxidant activity. J Alloys Compd 637(15):62–69CrossRefGoogle Scholar
  50. 50.
    Musa M, Yin C-Y, Savory R (2011) Analysis of the textural characteristics and pore size distribution of a commercial zeolite using various adsorption models. J Appl Sci 11(21):3650–3654CrossRefGoogle Scholar
  51. 51.
    Tan Y-H, Davis J, Fujikawa K, Ganesh N-V, Demchenko A, Stine K (2012) Surface area and pore size characteristics of nanoporous gold subjected to thermal, mechanical, or surface modification studied using gas adsorption isotherms, cyclic voltammetry, thermogravimetric analysis, and scanning electron microscopy. J Mater Chem 22(14):6733–6745CrossRefGoogle Scholar
  52. 52.
    Zalazar A, Guarnieri FA (2009) Microbalanza de cristal de cuarzo: diseño y simulación. Mecánica Comput XXVIII:2123–2136Google Scholar
  53. 53.
    Mosquera E, Diaz-Droguett DE, Carvajal N, Roble M, Morel M, Espinoza R (2014) Characterization and hydrogen storage in multi-walled carbon nanotubes grown by aerosol-assisted CVD method. Diam Relat Mater 43:66–71CrossRefGoogle Scholar
  54. 54.
    Morel M, Mosquera E, Diaz-Droguett DE, Carvajal N, Roble M, Rojas V, Espinoza-Gonzalez R (2015) Mineral magnetite as precursor in the synthesis of multi-walled carbon nanotubes and their capabilities of hydrogen adsorption. Int J Hydrog Energy 40(45):15540–15548CrossRefGoogle Scholar
  55. 55.
    Wang CL, Krim J, Toney MF (1988) Roughness and porosity characterization of carbon and magnetic films through adsorption isotherm measurements. J Vac Sci Technol A 7(3)CrossRefGoogle Scholar
  56. 56.
    Im JS, Park SJ, Kim T, Lee YS (2009) Hydrogen storage evaluation based on investigations of the catalytic properties of metal/metal oxides in electrospun carbon fibers. Int J Hydrog Energy 34(8):3382–3388CrossRefGoogle Scholar
  57. 57.
    Lasserre F, Rosenkranz A, Souza N, Roble M, Ramos-Moore E, Díaz-Droguett DE, Mücklich F (2016) Simultaneous deposition of carbon nanotubes and decoration with gold–palladium nanoparticles by laser-induced forward transfer. Appl Phys A 122(3)Google Scholar
  58. 58.
    Sha X, Chen L, Cooper AC, Pez GP, Cheng H (2009) Hydrogen absorption and diffusion in bulk α-MoO3. J Phys Chem C 113(26):11399–11407CrossRefGoogle Scholar
  59. 59.
    Georg A, Graf W, Neumann R, Wittwer V (2001) The role of water in gasochromic WO3 films. Thin Solid Films 384(2):269–275CrossRefGoogle Scholar
  60. 60.
    Whittingham MS (2004) Hydrogen motion in oxides: from insulators to bronzes. Solid State Ionics 168(3–4):255–263CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • S. Rojas
    • 1
  • Martín Roble
    • 1
  • J. O. Morales-Ferreiro
    • 2
    • 3
  • D.E. Diaz-Droguett
    • 1
    Email author
  1. 1.Instituto de Física, Facultad de FísicaPontificia Universidad Católica de ChileSantiagoChile
  2. 2.Departamento de Ingeniería MecánicaPontificia Universidad Católica de ChileSantiagoChile
  3. 3.Facultad de IngenieríaUniversidad de TalcaCuricoChile

Personalised recommendations