Advertisement

Ionics

, Volume 24, Issue 10, pp 3005–3013 | Cite as

Effect of Nb5+ charge neutralization substitution on the electrochemical performance of lithium-rich layered oxides

  • Kai Yang
  • Feixiang Ding
  • Yanying Liu
  • Bangbang Niu
  • Jianling Li
Original Paper

Abstract

The effect of the Nb5+ substitution with a charge-compensated strategy in lithium-rich layered oxides (LLOs) Li1.2Ni0.13+xCo0.13-xMn0.54-xNbxO2 (x = 0, 0.01, 0.02, and 0.03) has been investigated systematically. A hydroxide co-precipitation method followed by a high-temperature solid-state reaction is adopted in the synthesis process. Structural characterization confirms that the low dose substituting of Nb5+ in the layered structures forms a solid solution, and the samples show low cation mixing and enlarged Li+-diffusing channels, which imply favorable high-rate capability. The initial charge/discharge measurements suggest that the oxygen loss from the network during the delithiation process has been suppressed by the substitution of Nb5+ due to the formation of robust Nb–O bonds and a decrease in TM-O (TMs are transition metals) covalence. Moreover, these Nb–O bonds contribute to the stabilization of the crystalline framework, resulting in an excellent cycle stability with a mitigated voltage decay.

Keywords

Lithium-rich layered oxides Niobium substitution Voltage decay 

Notes

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (Grant 51572024) and the Science and Technology Project of the State Grid Corporation of China (Grant DG71-16-025).

References

  1. 1.
    Hong J, Gwon H, Jung S-K, Ku K, Kang K (2015) Review—lithium-excess layered cathodes for lithium rechargeable batteries. J Electrochem Soc 162:A2447–A2467CrossRefGoogle Scholar
  2. 2.
    Yabuuchi N, Yoshii K, Myung ST, Nakai I, Komaba S (2011) Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3-LiCo1/3Ni1/3Mn1/3O2. J Am Chem Soc 133:4404–4419CrossRefGoogle Scholar
  3. 3.
    Gao Y, Wang X, Ma J, Wang Z, Chen L (2015) Selecting substituent elements for Li-rich Mn-based cathode materials by density functional theory (DFT) calculations. Chem Mater 27:3456–3461CrossRefGoogle Scholar
  4. 4.
    Liu W, Oh P, Liu X, Myeong S, Cho W, Cho J (2015) Countering voltage decay and capacity fading of lithium-rich cathode material at 60 °C by hybrid surface protection layers. Adv Energy Mater 5:1–11Google Scholar
  5. 5.
    Xiao B, Wang B, Liu J, Kaliyappan K, Sun Q, Liu Y, Dadheech G, Balogh MP, Yang L, Sham TK, Li R, Cai M, Sun X (2017) Highly stable Li1.2Mn0.54Co0.13Ni0.13O2 enabled by novel atomic layer deposited AlPO4 coating. Nano Energy 34:120–130CrossRefGoogle Scholar
  6. 6.
    Oh P, Ko M, Myeong S, Kim Y, Cho J (2014) A novel surface treatment method and new insight into discharge voltage deterioration for high-performance 0.4Li2MnO3-0.6LiNi1/3Co1/3Mn1/3O2 cathode materials. Adv Energy Mater 4:1–9CrossRefGoogle Scholar
  7. 7.
    Wu F, Wang Z, Su Y, Yan N, Bao L, Chen S (2014) Li[Li0.2Mn0.54Ni0.13Co0.13]O2-MoO3 composite cathodes with low irreversible capacity loss for lithium ion batteries. J Power Sources 247:20–25CrossRefGoogle Scholar
  8. 8.
    Li J, Li J, Yu T, Ding F, Xu G, Li Z (2016) Stabilizing the structure and suppressing the voltage decay of Li[Li0.2Mn0.54Co0.13Ni0.13]O2 cathode materials for Li-ion batteries via multifunctional Pr oxide surface modification. Ceram Int 42:18620–18630CrossRefGoogle Scholar
  9. 9.
    Myung ST, Lee KS, Yoon CS, Sun YK, Amine K, Yashiro H (2010) Effect of AlF3 coating on thermal behavior of chemically delithiated Li0.35[Ni1/3Co1/3Mn1/3]O2. J Phys Chem C 114:4710–4718CrossRefGoogle Scholar
  10. 10.
    Sun YK, Lee MJ, Yoon CS, Hassoun J, Amine K, Scrosati B (2012) The role of AlF3 coatings in improving electrochemical cycling of Li-enriched nickel-manganese oxide electrodes for Li-ion batteries. Adv Mater 24:1192–1196CrossRefGoogle Scholar
  11. 11.
    Wang Z, Liu E, He C, Shi C, Li J, Zhao N (2013) Effect of amorphous FePO4 coating on structure and electrochemical performance of Li1.2Ni0.13Co0.13Mn0.54O2 as cathode material for Li-ion batteries. J Power Sources 236:25–32CrossRefGoogle Scholar
  12. 12.
    Ding F, Li J, Deng F, Xu G, Liu Y, Yang K, Kang F (2017) Surface heterostructure induced by PrPO4 modification in Li1.2[Mn0.54Ni0.13Co0.13]O2 cathode material for high-performance lithium-ion batteries with mitigating voltage decay. ACS Appl Mater Interfaces 9:27936–27945CrossRefGoogle Scholar
  13. 13.
    Zheng F, Yang C, Xiong X, Xiong J, Hu R, Chen Y, Liu M (2015) Nanoscale surface modification of lithium-rich layered-oxide composite cathodes for suppressing voltage fade. Angew Chemie - Int Ed 54:13058–13062CrossRefGoogle Scholar
  14. 14.
    Xue Q, Li J, Xu G, Zhou H, Wang X, Kang F (2014) In-situ polyaniline modified cathode material Li[Li0.2Mn0.54Ni0.13Co0.13]O2 with high rate capacity for lithium ion batteries. J Mater Chem A 2:18613–18623CrossRefGoogle Scholar
  15. 15.
    He X, Wang J, Wang R, Qiu B, Frielinghaus H, Niehoff P, Liu H, Stan MC, Paillard E, Winter M, Li J (2016) A 3D porous Li-rich cathode material with an in situ modified surface for high performance lithium ion batteries with reduced voltage decay. J Mater Chem A 4:7230–7237CrossRefGoogle Scholar
  16. 16.
    Luo K, Roberts MR, Hao R, Guerrini N, Liberti E, Allen CS, Kirkland AI, Bruce PG (2016) One-pot synthesis of lithium-rich cathode material with hierarchical morphology. Nano Lett 16:7503–7508CrossRefGoogle Scholar
  17. 17.
    Zheng Z, Guo XD, Zhong YJ, Hua WB, Shen CH, Chou SL, Yang XS (2016) Host structural stabilization of Li1.232Mn0.615Ni0.154O2 through K-doping attempt: toward superior electrochemical performances. Electrochim Acta 188:336–343CrossRefGoogle Scholar
  18. 18.
    Qing RP, Shi JL, Xiao DD, Zhang XD, Yin YX, Zhai YB, Gu L, Guo YG (2016) Enhancing the kinetics of Li-rich cathode materials through the pinning effects of gradient surface Na+ doping. Adv Energy Mater 6:1–6Google Scholar
  19. 19.
    Nayak PK, Grinblat J, Levi M, Levi E, Kim S, Choi JW, Aurbach D (2016) Al doping for mitigating the capacity fading and voltage decay of layered Li and Mn-rich cathodes for Li-ion batteries. Adv Energy Mater 6:1–13CrossRefGoogle Scholar
  20. 20.
    Yu T, Li J, Xu G, Li J, Ding F, Kang F (2017) Improved cycle performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 by Ga doping for lithium ion battery cathode material. Solid State Ionics 301:64–71CrossRefGoogle Scholar
  21. 21.
    Li N, An R, Su Y, Wu F, Bao L, Chen L, Zheng Y, Shou H, Chen S (2013) The role of yttrium content in improving electrochemical performance of layered lithium-rich cathode materials for Li-ion batteries. J Mater Chem A 1:9760–9767CrossRefGoogle Scholar
  22. 22.
    Knight JC, Nandakumar P, Kan WH, Manthiram A (2015) Effect of Ru substitution on the first charge–discharge cycle of lithium-rich layered oxides. J Mater Chem A 3:2006–2011CrossRefGoogle Scholar
  23. 23.
    Qiao Q-Q, Qin L, Li G-R, Wang Y-L, Gao X-P (2015) Sn-stabilized Li-rich layered Li(Li0.17Ni0.25Mn0.58)O2 oxide as a cathode for advanced lithium-ion batteries. J Mater Chem A 3:17627–17634CrossRefGoogle Scholar
  24. 24.
    Song B, Zhou C, Wang H, Liu H, Liu Z, Lai MO, Lu L (2014) Advances in sustain stable voltage of Cr-doped Li-rich layered cathodes for lithium ion batteries. J Electrochem Soc 161:A1723–A1730CrossRefGoogle Scholar
  25. 25.
    Liu J, Wang S, Ding Z, Zhou R, Xia Q, Zhang J, Chen L, Wei W, Wang P (2016) The effect of boron doping on structure and electrochemical performance of lithium-rich layered oxide materials. ACS Appl Mater Interfaces 8:18008–18017CrossRefGoogle Scholar
  26. 26.
    Li B, Yan H, Ma J, Yu P, Xia D, Huang W, Chu W, Wu Z (2014) Manipulating the electronic structure of Li-rich manganese-based oxide using polyanions: towards better electrochemical performance. Adv Funct Mater 24:5112–5118CrossRefGoogle Scholar
  27. 27.
    Li X, Xin H, Liu Y, Li D, Yuan X, Qin X (2015) Effect of niobium doping on the microstructure and electrochemical properties of lithium-rich layered Li[Li0.2Ni0.2Mn0.6]O2 as cathode materials for lithium ion batteries. RSC Adv 5:45351–45358CrossRefGoogle Scholar
  28. 28.
    Chen Y, Xu G, Li J, Zhang Y, Chen Z, Kang F (2013) High capacity 0.5Li2MnO3·0.5LiNi0.33Co0.33Mn0.33O2 cathode material via a fast co-precipitation method. Electrochim Acta 87:686–692CrossRefGoogle Scholar
  29. 29.
    Shunmugasundaram R, Arumugam RS, Dahn JR (2016) A study of stacking faults and superlattice ordering in some Li-rich layered transition metal oxide positive electrode materials. J Electrochem Soc 163:A1394–A1400CrossRefGoogle Scholar
  30. 30.
    Jian Z, Lu X, Fang Z, Hu Y-S, Zhou J, Chen W, Chen L (2011) LiNb3O8 as a novel anode material for lithium-ion batteries. Electrochem Commun 13:1127–1130CrossRefGoogle Scholar
  31. 31.
    Song JH, Shim JH, Kapylou A, Yeon DH, Lee DH, Kim DH, Park JH, Kang SH (2016) Suppression of voltage depression in Li-rich layered oxide by introducing GaO4 structural units in the Li2MnO3-like nano-domain. Nano Energy 30:717–727CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Kai Yang
    • 1
  • Feixiang Ding
    • 2
  • Yanying Liu
    • 2
  • Bangbang Niu
    • 2
  • Jianling Li
    • 2
  1. 1.China Electric Power Research InstituteBeijingChina
  2. 2.School of Metallurgical and Ecological EngineeringUniversity of Science and Technology BeijingBeijingChina

Personalised recommendations