, Volume 24, Issue 10, pp 2957–2963 | Cite as

Effect of high-temperature crystallization on the electrochemical properties of LiNi0.5Co0.2Mn0.3O2 synthesized from a lithiated transition metal oxide precursor

  • Longlong Xue
  • Yunjiao LiEmail author
  • Qiang Han
  • Qianye Su
  • Yongxiang Chen
  • Jianguo Li
  • Tongxing Lei
  • Yujie Chen
  • Jian Chen
Original Paper


The lithiated transition metal oxide precursor (LNCMO) with typical α-NaFeO2 structure and imperfect crystallinity, obtained from a hydrothermal process, was pretreated at 500 °C and then subjected to sintering at 800–920 °C to synthesize the ternary layered LiNi0.5Co0.2Mn0.3O2 (NCM523). X-ray diffraction (XRD), scanning electron microscope (SEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and charge/discharge testing were used for investigating the effect of the high-temperature crystallization on the properties of the NCM523 cathode materials. The results show that the materials heated at 880–900 °C possess superior cation ordering, perfect crystallinity, and excellent electrochemical performances, among which the material heated at 900 °C delivers better performances, with the initial discharge capacity of 152.6 mAh g−1 at 0.5 C over 3.0 to 4.3 V and the capacity retention of 95.5% after 50 cycles. Furthermore, the effect of the high-temperature crystallization on the Li+ diffusion coefficient, potential polarization, and electrochemical resistance are discussed.


Lithium-ion battery LiNi0.5Co0.2Mn0.3O2 Lithiated precursor High-temperature crystallization Electrochemical properties 



The authors are very grateful for the financial support from the Glorious Laurel Scholar Program of the Government of Guangxi Zhuang Autonomous Region, No.2011A025.


  1. 1.
    Liu S, Wu H, Huang L, Xiang M, Liu H, Zhang Y (2016) Synthesis of Li2Si2O5-coated LiNi0.6Co0.2Mn0.2O2 cathode materials with enhanced high-voltage electrochemical properties for lithium-ion batteries. Journal of Alloys & Compounds 674:447–454. CrossRefGoogle Scholar
  2. 2.
    Wei Y, Zheng J, Cui S, Song X, Su Y, Deng W, Wu Z, Wang X, Wang W, Rao M (2015) Kinetics Tuning of Li-Ion Diffusion in Layered Li(NixMnyCoz)O2. J Am Chem Soc 137(26):8364–8367. CrossRefPubMedGoogle Scholar
  3. 3.
    Yang K, Fan LZ, Guo J, Qu X (2012) Significant improvement of electrochemical properties of AlF3-coated LiNi0.5Co0.2Mn0.3O2 cathode materials. Electrochim Acta 63:363–368. CrossRefGoogle Scholar
  4. 4.
    Xu B, Qian D, Wang Z, Meng YS (2012) Recent progress in cathode materials research for advanced lithium ion batteries. Mater Sci Eng R Rep 73(5-6):51–65. CrossRefGoogle Scholar
  5. 5.
    Yan J, Liu X, Li B (2014) Recent progress in Li-rich layered oxides as cathode materials for Li-ion batteries. RSC Adv 4(108):63268–63284. CrossRefGoogle Scholar
  6. 6.
    Jiang Q, Du K, He Y (2013) A novel method for preparation of LiNi1/3Mn1/3Co1/3O2 cathode material for Li-ion batteries. Electrochim Acta 107:133–138. CrossRefGoogle Scholar
  7. 7.
    Noh HJ, Youn S, Chong SY, Sun YK (2013) Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries. J Power Sources 233:121–130. CrossRefGoogle Scholar
  8. 8.
    Huang Z, Wang Z, Zheng X, Guo H, Li X, Jing Q, Yang Z (2015) Effect of Mg doping on the structural and electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode materials. Electrochim Acta 182:795–802. CrossRefGoogle Scholar
  9. 9.
    Wu H, Wang Z, Liu S, Zhang L, Zhang Y (2016) Chem Aust 2:1921–1928Google Scholar
  10. 10.
    Mo Y, Hou B, Li D, Jia X, Cao B, Yin L, Chen Y (2016) RSC Adv 6Google Scholar
  11. 11.
    Rong H, Xu M, Zhu Y, Xie B, Lin H, Liao Y, Xing L, Li W (2016) J Power Sources 332:312–321. CrossRefGoogle Scholar
  12. 12.
    Jianming Zheng WHK, Manthiram A (2015) ACS Appl. Mater. Interfaces 7:6926–6934CrossRefGoogle Scholar
  13. 13.
    Shuang Li YY, Xie M, Zhang Q (2017) Rare Metals 36:277–283CrossRefGoogle Scholar
  14. 14.
    Yue Yang SL, Zhang Q, Zhang Y, Xu S (2017) Ind Eng Chem Res 56:175–182CrossRefGoogle Scholar
  15. 15.
    S.X. Yue Yang, Yinghe He, Waste Management, 2017 (2017)Google Scholar
  16. 16.
    Yue Yang GH, Xie M, Xu S, He Y (2016) Synthesis and performance of spherical LiNixCoyMn1-x-yO2 regenerated from nickel and cobalt scraps. Hydrometallurgy 165:358–369. CrossRefGoogle Scholar
  17. 17.
    Yang Yue XS, Ming X, Yinghe H, Guoyong H, Youcai Y (2015) Growth mechanisms for spherical mixed hydroxide agglomerates prepared by co-precipitation method: A case of Ni1/3Co1/3Mn1/3(OH)2. J Alloys Compd 619:846–853. CrossRefGoogle Scholar
  18. 18.
    Jianming Zheng JX, Zhang J-G (2016) Nano Today 11:678–694CrossRefGoogle Scholar
  19. 19.
    Wang F, Zhang Y, Zou J, Liu W, Chen Y (2013) The structural mechanism of the improved electrochemical performances resulted from sintering atmosphere for LiNi0.5Co0.2Mn0.3O2 cathode material. Journal of Alloys & Compounds 558:172–178. CrossRefGoogle Scholar
  20. 20.
    Tang Z, Wang Z, Li X, Peng W (2012) Influence of lithium content on the electrochemical performance of Li1+x(Mn0.533Ni0.233Co0.233)1−xO2 cathode materials. J Power Sources 208:237–241. CrossRefGoogle Scholar
  21. 21.
    Lee YM, Nam KM, Hwang EH, Kwon YG, Kang DH, Kim SS, Song SW (2014) Interfacial Origin of Performance Improvement and Fade for 4.6 V LiNi0.5Co0.2Mn0.3O2Battery Cathodes. J Phys Chem C 118(20):10631–10639. CrossRefGoogle Scholar
  22. 22.
    Cho YH, Jang D, Yoon J, Kim H, Ahn TK, Nam KW, Sung YE, Kim WS, Lee YS, Yang XQ (2013) Thermal stability of charged LiNi0.5Co0.2Mn0.3O2 cathode for Li-ion batteries investigated by synchrotron based in situ X-ray diffraction. Journal of Alloys & Compounds 562:219–223. CrossRefGoogle Scholar
  23. 23.
    Du QX, Tang ZF, Ma XH, Zang Y, Sun X, Shao Y, Wen ZY, Chen CH (2015) Improving the electrochemical properties of high-energy cathode material LiNi0.5Co0.2Mn0.3O2 by Zr doping and sintering in oxygen. Solid State Ionics 279:11–17. CrossRefGoogle Scholar
  24. 24.
    Li Y, Su Q, Han Q, Li P, Li L, Xu C, Cao X, Cao G (2014) Ceram Int 40(9):14933–14938. CrossRefGoogle Scholar
  25. 25.
    Li Y, Han Q, Ming X, Ren M, Li L, Ye W, Zhang X, Xu H, Li L (2014) Ceram Int 40 (14933–14938CrossRefGoogle Scholar
  26. 26.
    Wang Y, Yang Z, Qian Y, Gu L, Zhou H (2015) Adv Mater 27(26):3915–3920. CrossRefPubMedGoogle Scholar
  27. 27.
    Kong JZ, Zhou F, Wang CB, Yang XY, Zhai HF, Li H, Li JX, Tang Z, Zhang SQ (2013) Effects of Li source and calcination temperature on the electrochemical properties of LiNi0.5Co0.2Mn0.3O2 lithium-ion cathode materials. Journal of Alloys & Compounds 554:221–226. CrossRefGoogle Scholar
  28. 28.
    Chen H, Hu Q, Huang Z, He Z, Wang Z, Guo H, Li X (2016) Ceram Int 42(1):263–269. CrossRefGoogle Scholar
  29. 29.
    Ma H, Zhang S, Ji W, Tao Z, Chen J (2008) α-CuV2O6Nanowires: hydrothermal synthesis and primary lithium battery application. J Am Chem Soc 130(15):5361–5367. CrossRefPubMedGoogle Scholar
  30. 30.
    Wang D, Li X, Wang Z, Guo H, Xu Y, Fan Y, Ru J (2015) Electrochim Acta 188:48–56CrossRefGoogle Scholar
  31. 31.
    Ho CK, Raistrick ID, Huggins RA (1980) Application of A-C Techniques to the Study of Lithium Diffusion in Tungsten Trioxide Thin Films. J Electrochem Soc 127(2):343–350. CrossRefGoogle Scholar
  32. 32.
    Huo ZQ, Cui YT, Wang D, Dong Y, Chen L (2014) The influence of temperature on a nutty-cake structural material: LiMn1−xFexPO4 composite with LiFePO4 core and carbon outer layer for lithium-ion battery. J Power Sources 245:331–336. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Longlong Xue
    • 1
  • Yunjiao Li
    • 1
    Email author
  • Qiang Han
    • 1
  • Qianye Su
    • 1
  • Yongxiang Chen
    • 1
  • Jianguo Li
    • 1
  • Tongxing Lei
    • 1
  • Yujie Chen
    • 1
  • Jian Chen
    • 1
  1. 1.School of Metallurgy and EnvironmentCentral South UniversityChangshaPeople’s Republic of China

Personalised recommendations