Advertisement

Ionics

, Volume 24, Issue 10, pp 3095–3100 | Cite as

Pd–Mn3O4 on 3D hierarchical porous graphene-like carbon for oxygen evolution reaction

  • Chan-Juan Zhang
  • Guo-Liang Pan
  • Yong-Qiang Zhou
  • Chang-Wei Xu
Original Paper

Abstract

A 3D hierarchical porous graphene-like carbon (3D HPG) has been studied as conducting support for Pd and Mn3O4 nanoparticles. The Pd–Mn3O4 supported on 3D HPG demonstrates as an excellent catalyst for oxygen evolution reaction (OER) in alkaline medium. The Pd–Mn3O4(wt 2:1)/HPG catalyst shows a low onset potential of 0.497 V and achieves a high current density of 5.3 mA cm−2 at 0.7 V (vs. SCE). The outstanding electrocatalytic activity is attributed to a synergistic effect between Pd and Mn3O4, and the 3D HPG enhances conductivity for charge transport and gives more active sites for the OER reaction.

Keywords

Oxygen evolution Water oxidation Graphene-like carbon Palladium Manganese oxide 

Notes

Funding information

This work was financially supported by the Natural Science Foundation of Guangdong Province (2014A030313521), Scientific Research Foundation for Yangcheng Scholar (1201561607), and Science and Technology Program of Guangzhou (201510010112).

References

  1. 1.
    Wang MY, Wang Z, Gong XZ, Guo ZC (2014) The intensification technologies to water electrolysis for hydrogen production—a review. Renew Sust Energ Rev 29:573–588.  https://doi.org/10.1016/j.rser.2013.08.090 CrossRefGoogle Scholar
  2. 2.
    Qolipour M, Mostafaeipour A, Tousi OM (2017) Techno-economic feasibility of a photovoltaic-wind power plant construction for electric and hydrogen production: a case study. Renew Sust Energ Rev 78:113–123.  https://doi.org/10.1016/j.rser.2017.04.088 CrossRefGoogle Scholar
  3. 3.
    He DP, Tang HL, Kou ZK, Pan M, Sun XL, Zhang JJ, SC M (2017) Engineered graphene materials: synthesis and applications for polymer electrolyte membrane fuel cells. Adv Mater 29(20):1601741.  https://doi.org/10.1002/adma.201601741 CrossRefGoogle Scholar
  4. 4.
    Wang SY, Jiang SP (2017) Prospects of fuel cell technologies. Natl Sci Rev 4:163–166Google Scholar
  5. 5.
    Surendranath Y, Kanan MW, Nocera DG (2010) Mechanistic studies of the oxygen evolution reaction by a cobalt-phosphate catalyst at neutral pH. J Am Chem Soc 132(46):16501–16509.  https://doi.org/10.1021/ja106102b CrossRefPubMedGoogle Scholar
  6. 6.
    Bediako DK, Surendranath Y, Nocera DG (2013) Mechanistic studies of the oxygen evolution reaction mediated by a nickel–borate thin film electrocatalyst. J Am Chem Soc 135(9):3662–3674.  https://doi.org/10.1021/ja3126432 CrossRefPubMedGoogle Scholar
  7. 7.
    Gong L, Ren D, Deng YL, Yeo BS (2016) Efficient and stable evolution of oxygen using pulse-electrodeposited Ir/Ni oxide catalyst in Fe-spiked KOH electrolyte. ACS Appl Mater Interfaces 8(25):15985–15990.  https://doi.org/10.1021/acsami.6b01888 CrossRefPubMedGoogle Scholar
  8. 8.
    Papaderakis A, Pliatsikas N, Prochaska C, Vourlias G, Patsalas P, Tsiplakides D, Balomenou S, Sotiropoulos S (2016) Oxygen evolution at IrO2 shell–Ir−Ni core electrodes prepared by galvanic replacement. J Phys Chem C 120(36):19995–20005.  https://doi.org/10.1021/acs.jpcc.6b06025 CrossRefGoogle Scholar
  9. 9.
    Osgood H, Devaguptapu SV, Xu H, Cho J, Wu G (2016) Transition metal (Fe, Co, Ni, and Mn) oxides for oxygen reduction and evolution bifunctional catalysts in alkaline media. Nano Today 11(5):601–625.  https://doi.org/10.1016/j.nantod.2016.09.001 CrossRefGoogle Scholar
  10. 10.
    Xiong ZP, Si YJ, Li MJ (2017) Improving the catalytic performance of nickel-iron oxide to oxygen evolution reaction by refining its particles with the assistance of ionic liquid. Ionics 23(3):789–794.  https://doi.org/10.1007/s11581-016-1922-8 CrossRefGoogle Scholar
  11. 11.
    Ramírez A, Hillebrand P, Stellmach D, May MM, Bogdanoff P, Fiechter S (2014) Evaluation of MnOx, Mn2O3, and Mn3O4 electrodeposited films for the oxygen evolution reaction of water. J Phys Chem C 118(26):14073–14081.  https://doi.org/10.1021/jp500939d CrossRefGoogle Scholar
  12. 12.
    Huynh M, Bediako DK, Nocera DG (2014) A functionally stable manganese oxide oxygen evolution catalyst in acid. J Am Chem Soc 136(16):6002–6010.  https://doi.org/10.1021/ja413147e CrossRefPubMedGoogle Scholar
  13. 13.
    Pandey J, Hua B, Ng W, Yang Y, Veen K, Chen J, Geels NJ, Luo JL, Rothenberg G, Yan N (2017) Developing hierarchically porous MnOx/NC hybrid nanorods for oxygen reduction and evolution catalysis. Green Chem 19(12):2793–2797.  https://doi.org/10.1039/C7GC00147A CrossRefGoogle Scholar
  14. 14.
    Pickrahn KL, Park SW, Gorlin Y, Lee HBR, Jaramillo TF, Bent SF (2012) Active MnOx electrocatalysts prepared by atomic layer deposition for oxygen evolution and oxygen reduction reactions. Adv Energy Mater 2(10):1269–1277.  https://doi.org/10.1002/aenm.201200230 CrossRefGoogle Scholar
  15. 15.
    Wang Y, Liu Q, TJ H, Zhang LM, Deng YQ (2017) Carbon supported MnO2-CoFe2O4 with enhanced electrocatalytic activity for oxygen reduction and oxygen evolution. Appl Surf Sci 403:51–56.  https://doi.org/10.1016/j.apsusc.2017.01.127 CrossRefGoogle Scholar
  16. 16.
    Zhang JH, Feng JY, Zhu T, Liu ZL, Li QY, Chen SZ, CW X (2016) Pd-doped urchin-like MnO2-carbon sphere three-dimensional (3D) material for oxygen evolution reaction. Electrochim Acta 196:661–669.  https://doi.org/10.1016/j.electacta.2016.03.025 CrossRefGoogle Scholar
  17. 17.
    Kuo CH, Mosa IM, Thanneeru S, Sharma V, Zhang LC, Biswas S, Aindow M, Alpay SP, Rusling JF, Suib SL, He J (2015) Facet-dependent catalytic activity of MnO electrocatalysts for oxygen reduction and oxygen evolution reactions. Chem Commun 51(27):5951–5954.  https://doi.org/10.1039/C5CC01152C CrossRefGoogle Scholar
  18. 18.
    Kölbach M, Fiechter S, Krol R, Bogdanoff P (2017) Evaluation of electrodeposited α-Mn2O3 as a catalyst for the oxygen evolution reaction. Catal Today 290:2–9.  https://doi.org/10.1016/j.cattod.2017.03.030 CrossRefGoogle Scholar
  19. 19.
    Ghosh S, Kar P, Bhandary N, Basu S, Sardar S, Maiyalagan T, Majumdar D, Bhattacharya SK, Bhaumik A, Lemmens P, Pal SK (2016) Microwave-assisted synthesis of porous Mn2O3 nanoballs as bifunctional electrocatalyst for oxygen reduction and evolution reaction. Catal Sci Technol 6(5):1417–1429.  https://doi.org/10.1039/C5CY01264C CrossRefGoogle Scholar
  20. 20.
    Luo ZS, Irtem E, Ibáñez M, Nafria R, Sánchez SM, Genç A, Mata M, Liu Y, Cadavid D, Llorca J, Arbiol J, Andreu T, Morante JR, Cabot A (2016) Mn3O4@CoMn2O4−CoxOy nanoparticles: partial cation exchange synthesis and electrocatalytic properties toward the oxygen reduction and evolution reactions. ACS Appl Mater Interfaces 8(27):17435–17444.  https://doi.org/10.1021/acsami.6b02786 CrossRefPubMedGoogle Scholar
  21. 21.
    Guo CX, Chen SC, XM L (2014) Ethylenediamine-mediated synthesis of Mn3O4 nano-octahedrons and their performance as electrocatalysts for the oxygen evolution reaction. Nano 6:10896–10901Google Scholar
  22. 22.
    Gao MR, Xu YF, Jiang J, Zheng YR, Yu SH (2012) Water oxidation electrocatalyzed by an efficient Mn3O4/CoSe2 nanocomposite. J Am Chem Soc 134(6):2930–2933.  https://doi.org/10.1021/ja211526y CrossRefPubMedGoogle Scholar
  23. 23.
    Maruthapandian V, Pandiarajan T, Saraswathy V, Muralidharan S (2016) Oxygen evolution catalytic behaviour of Ni doped Mn3O4 in alkaline medium. RSC Adv 6(54):48995–49002.  https://doi.org/10.1039/C6RA01877G CrossRefGoogle Scholar
  24. 24.
    Kim J, Kim JS, Baik H, Kang K, Lee K (2016) Porous β-MnO2 nanoplates derived from MnCO3 nanoplates as highly efficient electrocatalysts toward oxygen evolution reaction. RSC Adv 6(32):26535–26539.  https://doi.org/10.1039/C6RA01091A CrossRefGoogle Scholar
  25. 25.
    Han GQ, Liu YR, WH H, Dong B, Li X, Shang X, Chai YM, Liu YQ, Liu CG (2016) Crystallographic structure and morphology transformation of MnO2 nanorods as efficient electrocatalysts for oxygen evolution reaction. J Electrochem Soc 163(2):H67–H73.  https://doi.org/10.1149/2.0371602jes CrossRefGoogle Scholar
  26. 26.
    Han XP, Cheng FY, Zhang TR, Yang JA, YX H, Chen J (2014) Hydrogenated uniform Pt clusters supported on porous CaMnO3 as a bifunctional electrocatalyst for enhanced oxygen reduction and evolution. Adv Mater 26(13):2047–2051.  https://doi.org/10.1002/adma.201304867 CrossRefPubMedGoogle Scholar
  27. 27.
    Wang SQ, Xia WY, Liang ZS, Liu ZL, CW X, Li QY (2017) NiO/C enhanced by noble metal (Pt, Pd, Au) as high-efficient electrocatalyst for oxygen evolution reaction in water oxidation to obtain high purity hydrogen. Ionics 23(8):2161–2166.  https://doi.org/10.1007/s11581-017-2041-x CrossRefGoogle Scholar
  28. 28.
    Qu Q, Zhang JH, Wang J, Li QY, CW X, XH L (2017) Three-dimensional ordered mesoporous Co3O4 enhanced by Pd for oxygen evolution reaction. Sci Rep 7:41542.  https://doi.org/10.1038/srep41542 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Liu GG, Li P, Zhao GX, Wang X, Kong JT, Liu HM, Zhang HB, Chang K, Meng XG, Kako T, Ye JH (2016) Promoting active species generation by plasmon-induced hot-electron excitation for efficient electrocatalytic oxygen evolution. J Am Chem Soc 138(29):9128–9136.  https://doi.org/10.1021/jacs.6b05190 CrossRefPubMedGoogle Scholar
  30. 30.
    Zhuang ZB, Sheng WC, Yan YS (2014) Synthesis of monodispere Au@Co3O4 core-shell nanocrystals and their enhanced catalytic activity for oxygen evolution reaction. Adv Mater 26(23):3950–3955.  https://doi.org/10.1002/adma.201400336 CrossRefPubMedGoogle Scholar
  31. 31.
    Yeo BS, Bell AT (2011) Enhanced activity of gold-supported cobalt oxide for the electrochemical evolution of oxygen. J Am Chem Soc 133(14):5587–5593.  https://doi.org/10.1021/ja200559j CrossRefPubMedGoogle Scholar
  32. 32.
    Yeo BS, Bell AT (2012) In situ Raman study of nickel oxide and gold-supported nickel oxide catalysts for the electrochemical evolution of oxygen. J Phys Chem C 116(15):8394–8400.  https://doi.org/10.1021/jp3007415 CrossRefGoogle Scholar
  33. 33.
    Gao Q, Ranjan C, Pavlovic Z, Blume R, Schlögl R (2015) Enhancement of stability and activity of MnOx/Au electrocatalysts for oxygen evolution through adequate electrolyte composition. ACS Catal 5(12):7265–7275.  https://doi.org/10.1021/acscatal.5b01632 CrossRefGoogle Scholar
  34. 34.
    Seitz LC, Hersbach TJP, Nordlund D, Jaramillo TF (2015) Enhancement effect of noble metals on manganese oxide for the oxygen evolution reaction. J Phys Chem Lett 6(20):4178–4183.  https://doi.org/10.1021/acs.jpclett.5b01928 CrossRefPubMedGoogle Scholar
  35. 35.
    Frydendal R, Seitz LC, Sokaras D, Weng TC, Nordlund D, Chorkendorff I, Stephens IEL, Jaramillo TF (2017) Operando investigation of Au-MnOx thin films with improved activity for the oxygen evolution reaction. Electrochim Acta 230:22–28.  https://doi.org/10.1016/j.electacta.2017.01.085 CrossRefGoogle Scholar
  36. 36.
    Reier T, Oezaslan M, Strasser P (2012) Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: a comparative study of nanoparticles and bulk materials. ACS Catal 2(8):1765–1772.  https://doi.org/10.1021/cs3003098 CrossRefGoogle Scholar
  37. 37.
    Fang YY, Li XZ, YP H, Li F, Lin XQ, Tian M, An XC, Fu Y, Jin J, Ma JT (2015) Ultrasonication-assisted ultrafast preparation of multi walled carbon nanotubes/Au/Co3O4 tubular hybrids as superior anode materials for oxygen evolution reaction. J Power Sources 300:285–293.  https://doi.org/10.1016/j.jpowsour.2015.09.049 CrossRefGoogle Scholar
  38. 38.
    Masa J, Xia W, Sinev I, Zhao AQ, Sun ZY, Grtzke S, Weide P, Muhler M, Schuhmann W (2014) MnxOy/NC and CoxOy/NC nanoparticles embedded in a nitrogen-doped carbon matrix for high-performance bifunctional oxygen electrodes. Angew Chem Int Ed 53(32):8508–8512.  https://doi.org/10.1002/anie.201402710 CrossRefGoogle Scholar
  39. 39.
    Zhang ZX, Li ZF, Sun CY, Zhang TW, Wang SW (2017) Preparation and properties of an amorphous MnO2/CNTs-OH catalyst with high dispersion and durability for magnesium-air fuel cells. Catal Today 298:241–249.  https://doi.org/10.1016/j.cattod.2017.04.001 CrossRefGoogle Scholar
  40. 40.
    Zhong HX, Li K, Zhang Q, Wang J, Meng FL, ZJ W, Yan JM, Zhang XB (2016) In situ anchoring of Co9S8 nanoparticles on N and S co-doped porous carbon tube as bifunctional oxygen electrocatalysts. NPG Asia Mater 8(9):e308.  https://doi.org/10.1038/am.2016.132 CrossRefGoogle Scholar
  41. 41.
    Liu KH, Zhong HX, Meng FL, Zhang XB, Yan JM, Jiang Q (2017) Recent advances in metal–nitrogen–carbon catalysts for electrochemical water splitting. Mater Chem Front 1(11):2155–2173.  https://doi.org/10.1039/C7QM00119C CrossRefGoogle Scholar
  42. 42.
    Zhong HX, Wang J, Zhang Q, Meng FL, Bao D, Liu T, Yang XY, Chang ZW, Yan JM, Zhang XB (2017) In situ coupling FeM (M = Ni, co) with nitrogen-doped porous carbon toward highly efficient trifunctional electrocatalyst for overall water splitting and rechargeable Zn–air battery. Adv Sustain Syst 1(6):1700020.  https://doi.org/10.1002/adsu.201700020 CrossRefGoogle Scholar
  43. 43.
    Meng FL, Wang ZL, Zhong HX, Wang J, Yan JM, Zhang XB (2016) Reactive multifunctional template-induced preparation of Fe-N-doped mesoporous carbon microspheres towards highly efficient electrocatalysts for oxygen reduction. Adv Mater 28(36):7948–7955.  https://doi.org/10.1002/adma.201602490 CrossRefPubMedGoogle Scholar
  44. 44.
    Yue X, Huang SL, Cai JJ, Jin YS, Shen PK (2017) Heteroatoms dual doped porous graphene nanosheets as efficient bifunctional metal-free electrocatalysts for overall water-splitting. J Mater Chem A 5(17):7784–7790.  https://doi.org/10.1039/C7TA01957B CrossRefGoogle Scholar
  45. 45.
    Xia WY, Li N, Li QY, Ye KH, CW X (2016) Au-NiCo2O4 supported on three-dimensional hierarchical porous graphene-like material for highly effective oxygen evolution reaction. Sci Rep 6(1):23398.  https://doi.org/10.1038/srep23398 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Yue X, Huang SL, Jin YS, Shen PK (2017) Nitrogen and fluorine dual-doped porous graphene-nanosheets as efficient metal-free electrocatalysts for hydrogen-evolution in acidic media. Catal Sci Technol 7(11):2228–2235.  https://doi.org/10.1039/C7CY00384F CrossRefGoogle Scholar
  47. 47.
    Li YY, Li ZS, Shen PK (2013) Simultaneous formation of ultrahigh surface area and three-dimensional hierarchical porous graphene-like networks for fast and highly stable supercapacitors. Adv Mater 25(17):2474–2480.  https://doi.org/10.1002/adma.201205332 CrossRefPubMedGoogle Scholar
  48. 48.
    Li YY, Zhang HY, Shen PK (2015) Ultrasmall metal oxide nanoparticles anchored on three-dimensional hierarchical porous gaphene-like networks as anode for high-performance lithium ion batteries. Nano Energy 13:563–572.  https://doi.org/10.1016/j.nanoen.2015.03.044 CrossRefGoogle Scholar
  49. 49.
    Li ZY, Liu ZL, Liang JC, CW X, XH L (2014) Facile synthesis of Pd–Mn3O4/C as high-efficient electrocatalyst for oxygen evolution reaction. J Mater Chem A 2(43):18236–18240.  https://doi.org/10.1039/C4TA04110K CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Guangzhou Key Laboratory for Environmentally Functional Materials and Technology, School of Chemistry and Chemical EngineeringGuangzhou UniversityGuangzhouChina
  2. 2.Guangzhou Key Laboratory for New Energy and Green CatalysisGuangzhou UniversityGuangzhouChina

Personalised recommendations