, Volume 24, Issue 10, pp 2945–2955 | Cite as

Synthesis and electrochemical performance characterization of xLi3V2(PO4)3·yLiFe0.8Mn0.2PO4/C cathode materials for lithium-ion batteries

  • Pengjun Yang
  • Enshan HanEmail author
  • Lingzhi Zhu
  • Yanjing Han
  • Xingjiao Du
  • Ling Li
  • Lijun Dou
  • Tianying Li
  • Congcong Feng
Original Paper


The samples of xLi3V2(PO4)3·yLiFe0.8Mn0.2PO4/C (x:y = 1:0, 3:1, 1:1, 1:2, 0:1) are facilely prepared via a ball milling-assisted two-step sintering route. According to the results of Rietveld refinement, the xLi3V2(PO4)3·yLiFe0.8Mn0.2PO4/C (x, y ≠ 0) composites are composed of orthorhombic LiFe0.8Mn0.2PO4 and monoclinic L3V2(PO4)3. Electrochemical tests show that the faster reaction kinetics improve the electrochemical properties of the xLi3V2(PO4)3·yLiFe0.8Mn0.2PO4/C (x, y ≠ 0) composites, in which all multiphase composites release more than capacity of 100 mAh g−1 at 2C at the potential range of 2.5–4.5 V. In particular, the diffusion coefficient of lithium ion is in the magnitude of 10−7 to 10−9 cm2 s−1; Li3V2(PO4)3·2LiFe0.8Mn0.2PO4/C shows the highest specific capacity at the rate range of 0.1–2C and exhibits excellent long-term rate performance with capacity retention of 93.4% (relative to the initial discharge capacity) after 280 cycles at the rate of 5C.


Lithium-ion battery Cathode materials Li3V2(PO4)3 LiFe0.8Mn0.2PO4 Doping 


  1. 1.
    Muldoon J, Bucur CB, Gregory T (2014) Quest for nonaqueous multivalent secondary batteries: magnesium and beyond. Chem Rev 114(23):11683–11720. CrossRefPubMedGoogle Scholar
  2. 2.
    Goodenough JB, Park K (2013) The li-ion rechargeable battery: a perspective. J Am Chem Soc 135:1167–1176. CrossRefGoogle Scholar
  3. 3.
    Cao X, Pan A, Zhang Y, Li J, Luo Z, Yang X, Liang S, Cao G (2016) Nanorod-nanoflake interconnected LiMnPO4·Li3V2(PO4)3/C composite for high-rate and long-life lithium-ion batteries. ACS Appl Mater Interfaces 8(41):27632–27641. CrossRefGoogle Scholar
  4. 4.
    Omenya F, Wen B, Fang J, Zhang R, Wang Q, Chernova NA, Schneider-Haefner J, Cosandey F, Whittingham MS (2015) Mg substitution clarifies the reaction mechanism of olivine LiFePO4. Adv Energy Mater 5(7):1–9. CrossRefGoogle Scholar
  5. 5.
    Li Z, Peng Z, Zhang H, Hu T, Hu M, Zhu K, Wang X (2016) [100]-oriented LiFePO4 Nanoflakes toward high rate li-ion battery cathode. Nano Lett 16(1):795–799. CrossRefPubMedGoogle Scholar
  6. 6.
    Wang H, Liu Y, Li M et al (2010) Multifunctional TiO2 nanowires-modified nanoparticles bilayer film for 3D dye-sensitized solar cells. Optoelectron Adv Mater Rapid Commun 4:1166–1169. CrossRefGoogle Scholar
  7. 7.
    Liu H, Ren L, Li J, Tuo H (2016) Iron-assisted carbon coating strategy for improved electrochemical LiMn0.8Fe0.2PO4 cathodes. Electrochim Acta 212:800–807. CrossRefGoogle Scholar
  8. 8.
    Xiang W, Wu ZG, Wang EH, Chen MZ, Song Y, Zhang JB, Zhong YJ, Chou SL, Luo JH, Guo XD (2016) Confined synthesis of graphene wrapped LiMn0.5Fe0.5PO4 composite via two step solution phase method as high performance cathode for li-ion batteries. J Power Sources 329:94–103. CrossRefGoogle Scholar
  9. 9.
    Novikova S, Yaroslavtsev S, Rusakov V, Chekannikov A, Kulova T, Skundin A, Yaroslavtsev A (2015) Behavior of LiFe1-yMnyPO4/C cathode materials upon electrochemical lithium intercalation/deintercalation. J Power Sources 300:444–452. CrossRefGoogle Scholar
  10. 10.
    Wang Z-H, Yuan L-X, Zhang W-X, Huang Y-H (2012) LiFe0.8Mn0.2PO4/C cathode material with high energy density for lithium-ion batteries. J Alloys Compd 532:25–30. CrossRefGoogle Scholar
  11. 11.
    Yamada A, Kudo Y, Liu K-Y (2001) Reaction mechanism of the olivine-type lix(Mn0.6Fe 0.4)PO4 (0≤x≤1). J Electrochem Soc 148(7):A747. CrossRefGoogle Scholar
  12. 12.
    Roberts MR, Gi V, Denuault G, Owen JR (2010) High throughput electrochemical observation of structural phase changes in liFe1-xMnxPO4 during charge and discharge. J Electrochem Soc 157(4):A381–A386. CrossRefGoogle Scholar
  13. 13.
    Huang H, Yin SC, Kerr T, Taylor N, Nazar LF (2002) Nanostructured composites: a high capacity, fast rate Li3V2(PO4)3/carbon cathode for rechargeable lithium batteries. Adv Mater 14(21):1525–1528.<1525::AID-ADMA1525>3.0.CO;2-3 CrossRefGoogle Scholar
  14. 14.
    Ren M, Yang M, Liu W, Li M, Su L, Wu X, Wang Y (2016) Co-modification of nitrogen-doped graphene and carbon on Li3V2(PO4)3 particles with excellent long-term and high-rate performance for lithium storage. J Power Sources 326:313–321. CrossRefGoogle Scholar
  15. 15.
    Wei Q, An Q, Chen D, Mai L, Chen S, Zhao Y, Hercule KM, Xu L, Minhas-Khan A, Zhang Q (2014) One-pot synthesized bicontinuous hierarchical Li3V2(PO4)3/C mesoporous nanowires for high-rate and ultralong-life lithium-ion batteries. Nano Lett 14(2):1042–1048. CrossRefPubMedGoogle Scholar
  16. 16.
    Feng K, Cheng Y, Wang M, Zhang H, Li X, Zhang H (2015) Synthesis and electrochemical properties of Li3V2(P1-xBxO4)3/C cathode materials. J Mater Chem A 3(38):19469–19475. CrossRefGoogle Scholar
  17. 17.
    Liang S, Hu J, Zhang Y, Wang Y, Cao X, Pan A (2016) Facile synthesis of sandwich-structured Li3V2(PO4)3/carbon composite as cathodes for high performance lithium-ion batteries. J Alloys Compd 683:178–185. CrossRefGoogle Scholar
  18. 18.
    Ni Q, Bai Y, Yang Z, Li Y, Chen G, Ling L, Ren H, Chen S, Wu F, Wu C (2017) Wet-chemical coordination synthesized Li3V2(PO4)3/C for li-ion battery cathodes. J Alloys Compd 729:49–56. CrossRefGoogle Scholar
  19. 19.
    Zheng J, Han Y, Zhang B et al (2014) Comparative investigation of phosphate-based composite cathode materials for lithium-ion batteries. ACS Appl Mater Interfaces 6(16):13520–13526. CrossRefPubMedGoogle Scholar
  20. 20.
    Zhang B, Shen C, Zheng J, et al (2014) Synthesis and characterization of a multi-layer core-shell composite cathode material LiVOPO4 -Li3V2(PO4)3. J Electrochem Soc 161:A748–A752. CrossRefGoogle Scholar
  21. 21.
    Zheng J-c, Li X-h, Wang Z-x et al (2009) Characteristics of xLiFePO4·y Li3V2(PO4)3 electrodes for lithium batteries. Ionics (Kiel) 15(6):753–759. CrossRefGoogle Scholar
  22. 22.
    Zheng J-c, Li X-h, Wang Z-x et al (2010) Novel synthesis of LiFePO4-Li3V2(PO4)3 composite cathode material by aqueous precipitation and lithiation. J Power Sources 195(9):2935–2938. CrossRefGoogle Scholar
  23. 23.
    Zheng J, Zhang B, Yang Z, Ou X (2013) Studies of composite cathode material LiFePO4Li3V2(PO4)3 and it’s precursor FeVO4· xH2O. Bull Chem Soc Jpn 86:376–381. CrossRefGoogle Scholar
  24. 24.
    Liang S, Cao X, Wang Y, Hu Y, Pan A, Cao G (2016) Uniform 8LiFePO4·Li3V2(PO4)3/C nanoflakes for high-performance li-ion batteries. Nano Energy 22:48–58. CrossRefGoogle Scholar
  25. 25.
    Wang F, Yang J, NuLi Y, Wang J (2013) Composites of LiMnPO4 with Li3V2(PO4)3 for cathode in lithium-ion battery. Electrochim Acta 103:96–102. CrossRefGoogle Scholar
  26. 26.
    Wu L, Lu J, Wei G et al (2014) Synthesis and electrochemical properties of xLiMn0.9Fe0.1PO4· yLi3V2(PO4)3/C composite cathode materials for lithium-ion batteries. Electrochim Acta 146:288–294. CrossRefGoogle Scholar
  27. 27.
    Qin L, Xia Y, Qiu B, Cao H, Liu Y, Liu Z (2013) Synthesis and electrochemical performances of (1−x)LiMnPO4·xLi3V2(PO4)3/C composite cathode materials for lithium ion batteries. J Power Sources 239:144–150. CrossRefGoogle Scholar
  28. 28.
    Andersson AS, Thomas JO (2001) The source of first-cycle capacity loss in LiFePO4. J Power Sources 97:498–502. CrossRefGoogle Scholar
  29. 29.
    Mao WF, Fu YB, Zhao H et al (2015) Rational design and facial synthesis of Li3V2(PO4)3@C nanocomposites using carbon with different dimensions for ultrahigh-rate lithium-ion batteries. ACS Appl Mater Interfaces 7(22):12057–12066. CrossRefPubMedGoogle Scholar
  30. 30.
    Qiu X, Zhuang Q, Zhang Q et al (2012) Electrochemical and electronic properties of LiCoO2 cathode investigated by galvanostatic cycling and EIS. Phys Chem Chem Phys 14(8):2617–2630. CrossRefPubMedGoogle Scholar
  31. 31.
    Zhuang Q-C, Wei T, Du L-L, Cui YL, Fang L, Sun SG (2010) An electrochemical impedance spectroscopic study of the electronic and ionic transport properties of spinel LiMn2O4. J Phys Chem C 114(18):8614–8621. CrossRefGoogle Scholar
  32. 32.
    Luo Y, Xu X, Zhang Y, Pi Y, Yan M, Wei Q, Tian X, Mai L (2015) Three-dimensional LiMnPO4 ·Li3V2(PO4)3/C nanocomposite as a bicontinuous cathode for high-rate and long-life lithium-ion batteries. ACS Appl Mater Interfaces 7(31):17527–17534. CrossRefPubMedGoogle Scholar
  33. 33.
    Rui XH, Ding N, Liu J, Li C, Chen CH (2010) Analysis of the chemical diffusion coefficient of lithium ions in Li3V2(PO4)3 cathode material. Electrochim Acta 55(7):2384–2390. CrossRefGoogle Scholar
  34. 34.
    Wang J, Wang Z, Li X, Guo H, Wu X, Zhang X, Xiao W (2013) xLi3V2(PO4)3·LiVPO4F/C composite cathode materials for lithium ion batteries. Electrochim Acta 87:224–229. CrossRefGoogle Scholar
  35. 35.
    Zhao Y, Peng L, Liu B, Yu G (2014) Single-crystalline LiFePO4 nanosheets for high-rate li-ion batteries. Nano Lett 14(5):2849–2853. CrossRefPubMedGoogle Scholar
  36. 36.
    Zhang L, Qu Q, Zhang L, Li J, Zheng H (2014) Confined synthesis of hierarchical structured LiMnPO4/C granules by a facile surfactant-assisted solid-state method for high-performance lithiumion batteries. J Mater Chem A 2(3):711–719. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Pengjun Yang
    • 1
  • Enshan Han
    • 1
    Email author
  • Lingzhi Zhu
    • 1
  • Yanjing Han
    • 1
  • Xingjiao Du
    • 1
  • Ling Li
    • 1
  • Lijun Dou
    • 1
  • Tianying Li
    • 1
  • Congcong Feng
    • 1
  1. 1.School of Chemical Engineering and TechnologyHebei University of TechnologyTianjinPeople’s Republic of China

Personalised recommendations