, Volume 24, Issue 10, pp 3075–3084 | Cite as

Microwave-sintered Pr3+, Sm3+, and Gd3+ triple-doped ceria electrolyte material for IT-SOFC applications

  • Kasarapu VenkataramanaEmail author
  • Chittimadula Madhuri
  • Jada Shanker
  • Ch. Madhusudan
  • C. Vishnuvardhan Reddy
Original Paper


The Pr3+, Sm3+, and Gd3+ triple-doped ceria Ce0.76Pr0.08Sm0.08Gd0.08O2-δ material as solid electrolyte for IT-SOFC has been successfully synthesized by sol–gel auto-combustion route. The effect of microwave sintering (1300 °C for 15, 30, and 60 min, named as PSG-MS15, PSG-MS30, and PSG-MS60, respectively) on structural, electrical, and thermal properties of prepared electrolyte material has been studied. Powder X-ray diffraction, scanning electron microscope, energy dispersive spectroscopy, and Raman analysis revealed the single phase, microstructure, elemental confirmation, and structural oxygen vacancy formation of all the samples. Impedance spectroscopy analysis revealed the highest total ionic conductivity, i.e., 3.47 × 10−2 S cm−1 at 600 °C with minimum activation energy of 0.69 eV, in PSG-MS30 sample when compared to PSG-MS15 and PSG-MS60. The thermal expansion measurements have been carried out for PSG-MS30 specimen. The highest total ionic conductivity with minimum activation energy and moderate thermal expansion coefficient of PSG-MS30 sample makes the possibility of its use as solid electrolyte in IT-SOFC applications.


Triple-doped ceria Solid electrolyte Microwave sintering Total ionic conductivity IT-SOFC 



One of the authors, Kasarapu Venkataramana, thanks the University Grants Commission (UGC), New Delhi, India, for the financial assistance under the scheme of the UGC-UPE-FAR program.


  1. 1.
    Stambouli B, Traversa E (2002) Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy. Renew Sust Energ Rev 6(5):433–455. CrossRefGoogle Scholar
  2. 2.
    Minh NQ (1993) Ceramic Fuel Cells. J Am Ceramic Soc 76(3):563–588. CrossRefGoogle Scholar
  3. 3.
    Inaba H, Tagawa H (1996) Ceria-based solid electrolytes. Solid State Ionics 83(1-2):1–16. CrossRefGoogle Scholar
  4. 4.
    Bhabu KA, Theerthagiri J, Madhavan J, Balu T, Muralidharan G, Rajasekaran TR (2016) Cubic fluorite phase of samarium doped cerium oxide (CeO2)0.96Sm0.04 for solid oxide fuel cell electrolyte. J Mater Sci Mater Electron 27(2):1566–1573. CrossRefGoogle Scholar
  5. 5.
    Ahmed SI, Mohammed T, Bahafi A, Suresh MB (2017) Effect of Mg doping and sintering temperature on structural and morphological properties of samarium-doped ceria for IT-SOFC electrolyte. Appl Nanosci 7(5):243–252. CrossRefGoogle Scholar
  6. 6.
    Dikmen S, Aslanbay H, Dikmen E, Sahin O (2010) Hydrothermal preparation and electrochemical properties of Gd3+ and Bi3+, Sm3+, La3+, and Nd3+codoped ceria-based electrolytes for intermediate temperature-solid oxide fuel cell. J Power Sources 195(9):2488–2495. CrossRefGoogle Scholar
  7. 7.
    Tadokoro SK, Muccillo ENS (2007) Effect of Y and Dy co-doping on electrical conductivity of ceria ceramics. J Eur Ceramic Soc 27(13-15):4261–4264. CrossRefGoogle Scholar
  8. 8.
    Pikalova EY, Murashkina AA, Maragou VI, Demin AK, Strekalovsky VN, Tsiakaras PE (2011) CeO2 based materials doped with lanthanides for applications in intermediate temperature electrochemical devices. Int J Hydrog Energy 36(10):6175–6183. CrossRefGoogle Scholar
  9. 9.
    Ji B, Tian C, Wang C, Wu T, Xie J, Li M (2015) Preparation and characterization of Ce0.8Y0.2 − xCuxO2 − δ as electrolyte for intermediate temperature solid oxide fuel cells. J Power Sources 278:420–429. CrossRefGoogle Scholar
  10. 10.
    Ramesh S, James Raju KC (2012) Preparation and characterization of Ce1 − x(Gd0.5Pr0.5)xO2 electrolyte for IT-SOFCs. Int J Hydrog Energy 37(13):10311–10317. CrossRefGoogle Scholar
  11. 11.
    Xiaomin L, Qiuyue L, Lili Z, Xiaomei L (2015) Synthesis and characterization of Ce0.8Sm0.2 − xPrxO2 − δ (x = 0.02–0.08) solid electrolyte materials. J Rare Earths 33(4):411–416. CrossRefGoogle Scholar
  12. 12.
    Wang FY, Wan BZ, Cheng S (2005) Study on Gd3+ and Sm3+ co-doped ceria electrolytes. J Solid State Electrochem 9(3):168–173. CrossRefGoogle Scholar
  13. 13.
    Anderson DA, Simak SI, Skorodumova NV, Abrikosov IA, Johansson B (2006) Optimization of ionic conductivity in doped ceria. PANS 103:3518–3521. CrossRefGoogle Scholar
  14. 14.
    Rai A, Mehta P, Omar S (2014) Conduction behavior in SmxNd0.15 − xCe0.85O2 − δ. Solid State Ionics 263:190–196. CrossRefGoogle Scholar
  15. 15.
    Anirban S, Dutta A (2016) Microstructure and charge carrier dynamics in Pr-Sm-Eu triple-doped nanoceria. Solid State Ionics 295:48–56. CrossRefGoogle Scholar
  16. 16.
    Babu AS, Bauri R, Srinivas Reddy G (2016) Processing and conduction behavior of nanocrystalline Gd-doped and rare earth co-doped ceria electrolytes. Electrochim Acta 209:541–550. CrossRefGoogle Scholar
  17. 17.
    Venkataramana K, Madhuri C, Suresh Reddy Y, Bhikshamaiah G, Vishnuvardhan Reddy C (2017) Structural, electrical and thermal expansion studies of tri-doped ceria electrolyte materials for IT-SOFCs. J. Alloys Compd 719:97–107. CrossRefGoogle Scholar
  18. 18.
    Boskovic S, Zec S, Brankovic G, Brankovic Z, Devecerski A, Matovic B, Aldinger F (2010) Preparation, sintering and electrical properties of nano-grained multi doped ceria. Ceram Int 36(1):121–127. CrossRefGoogle Scholar
  19. 19.
    Stojmenovic M, Boskovic S, Bucevac D, Prekajski M, Babic B, Matovic B (2013) Electrical characterization of multi doped ceria ceramics. Ceram Int 39(2):1249–1255. CrossRefGoogle Scholar
  20. 20.
    Stojmenovic M, Boskovic S, Zunic M, Varela JA, Prekajski M, Matovic B, Mentus S (2014) Electrical properties of multi doped ceria. Ceram Int 40(7):9285–9292. CrossRefGoogle Scholar
  21. 21.
    Muhammed Ali SA, Anwar M, Abdalla AM, Somalu MR, Muchtar A (2017) Ce0.80Sm0.10Ba0.05Er0.05O2 − δ multi-doped ceria electrolyte for intermediate temperature solid oxide fuel cells. Ceram Int 43(1):1265–1271. CrossRefGoogle Scholar
  22. 22.
    Oghbaei M, Mirzae O (2010) Microwave versus conventional sintering: a review of fundamentals, advantages and applications. J Alloys Compounds 494(1-2):175–189. CrossRefGoogle Scholar
  23. 23.
    Gonjal JP, Heuguet R, Gil DM, Calzada AR, Marinel S, Moran E, Schmidt R (2015) Microwave synthesis & sintering of Sm and Ca co-doped ceria ceramics. Int J Hydrog Energy 40(45):15640–15651. CrossRefGoogle Scholar
  24. 24.
    Cesario MR, Savary E, Marinel S, Raveau B, Caignaert V (2016) Synthesis and electrochemical performance of Ce1 − xYbxO2 − x/2 solid electrolytes: the potential of microwave sintering. Solid State Ionics 294:67–72. CrossRefGoogle Scholar
  25. 25.
    Prekajski M, Stojmenovic M, Radojkovic A, Brankovic G, Oraon H, Subasri R, Matovic B (2014) Sintering and electrical properties of Ce1 − xBixO2 − δ solid solution. J Alloys Compounds 617:563–568. CrossRefGoogle Scholar
  26. 26.
    Venkataramana K, Ravindranath K, Madhuri C, Madhusudan C, Kumar NP, Reddy CV (2017) Low temperature microwave sintering of yttrium and samarium co-doped ceria solid electrolytes for IT-SOFCs. Ionics. CrossRefGoogle Scholar
  27. 27.
    Askrabic A, Dohcevic-Mitrovic ZD, Radovic M, scepanovic M, Popovic ZV (2009) Phonon-phonon interactions in Ce0.85Gd0.15O2 − δ nanocrystals studied by Raman spectroscopy. J Raman Spectrosc 40(6):650–655. CrossRefGoogle Scholar
  28. 28.
    Peng C, Wang Y, Jiang K, Bin BQ, Liang HW, Feng J, Meng J (2003) Study on the structure change and oxygen vacation shift for Ce1 − xSmxO2 − δ solid solution. J Alloys Compounds 349(1-2):273–278. CrossRefGoogle Scholar
  29. 29.
    Li SP, Lu JQ, Fang P, Luo MF (2009) Effect of oxygen vacancies on electrical properties of Ce0.8Sm0.1Nd0.1O2 − δ electrolyte: an in situ Raman spectroscopic study. J Power Sources 193(1):93–98. CrossRefGoogle Scholar
  30. 30.
    López JM, Gilbank AL, García T, Solsona B, Agouram S, Torrente-Murciano L (2015) The prevalence of surface oxygen vacancies over the mobility of bulk oxygen in nanostructured ceria for the total toluene oxidation. Appl Catal B Environ 174–175:403–412. CrossRefGoogle Scholar
  31. 31.
    Stojmenovic M, Boskovic S, Zunic M, Bbic B, Matovic B, Bajuk-Bogdanovic D, Mentus S (2015) Studies on structural, morphological and electrical properties of Ce1 − xErxO2 − δ (x = 0.05–0.20) as solid electrolyte for IT-SOFC. Mater Chem Phys 153:422–431. CrossRefGoogle Scholar
  32. 32.
    Anjaneya KC, Nayaka GP, Manjanna J, Govindaraj G, Ganesha KN (2013) Preparation and characterization of Ce1 − xGdxO2 − δ (x = 0.1–0.3) as solid electrolyte for intermediate temperature SOFC. J Alloys Compounds 578:53–59. CrossRefGoogle Scholar
  33. 33.
    Wu YC, Lin CC (2014) The microstructures and property analysis of aliovalent cations (Sm3+, Mg2+, Ca2+, Sr2+, Ba2+) co-doped ceria-based electrolytes after aging treatment. Int J Hydrog Energy 39(15):7988–8001. CrossRefGoogle Scholar
  34. 34.
    Ramesh S, Kumar VP, Kistaiah P, Reddy CV (2010) Preparation, characterization and thermo electrical properties of co-doped Ce0.8 − xSm0.2CaxO2 − δ materials. Solid State Ionics 181(1-2):86–91. CrossRefGoogle Scholar
  35. 35.
    Prashanth Kumar V, Reddy YS (2008) Thermal and electrical properties of rare-earth co-doped ceria ceramics. Mater Chem Phys 112(2):711–718. CrossRefGoogle Scholar
  36. 36.
    Tian C, Ji B, Xie J, Bao W, Liu K, Cheng J, Yin Q (2014) Preparation and characterization of Ce0.8La0.2 − xYxO1.9 as electrolyte for solid oxide fuel cells. J Rare Earths 32(12):1162–1169. CrossRefGoogle Scholar
  37. 37.
    Venkatesh V, Prashanth Kumar V, Sayanna R, Vishnuvardhan Reddy C (2012) Preparation, characterization and thermal expansion of Pr co-dopant in samarium doped ceria. Adv Mater Phys Chem 2(04):5–8. CrossRefGoogle Scholar
  38. 38.
    Jin C, Yang Z, Zhang H, Yang C, Chen F (2012) La0.6Sr1.4MnO4 layered perovskite anode material for intermediate temperature solid oxide fuel cells. Electrochem Comm 14(1):75–77. CrossRefGoogle Scholar
  39. 39.
    Yaremchenko AA, Brinkmann B, Janssen R, Frade JR (2013) Electrical conductivity, thermal expansion and stability of Y- and Al-substituted SrVO3 as prospective SOFC anode material. Solid State Ionics 247-248:86–93. CrossRefGoogle Scholar
  40. 40.
    Kong X, Sun H, Yi Z, Wang B, Zhang G, Liu G (2017) Manganese-rich SmBaCo2 − x − yMnxMgyO5 + δ (x = 0.5, 1, 11.5 and y = 0.05, 0.1) with stable structure and low thermal expansion coefficient as cathode materials for IT-SOFCs. Ceram Int 43(16):13394–13400. CrossRefGoogle Scholar
  41. 41.
    Zhang L, Liu M, Huang J, Song Z (2014) Improved thermal expansion and electrochemical performances of Ba0.6Sr0.4Co0.9Nb0.1O3 − δ–Gd0.1Ce0.9O1.95 composite cathodes for IT-SOFCs. Int J Hydrog Energy 39(15):7972–7979. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Kasarapu Venkataramana
    • 1
    Email author
  • Chittimadula Madhuri
    • 1
  • Jada Shanker
    • 1
  • Ch. Madhusudan
    • 1
  • C. Vishnuvardhan Reddy
    • 1
  1. 1.Department of PhysicsOsmania UniversityHyderabadIndia

Personalised recommendations