Advertisement

Ionics

, Volume 24, Issue 10, pp 3177–3186 | Cite as

A 3D composite of gold nanoparticle-decorated MnO2-graphene-carbon nanotubes as a novel sensing platform for the determination of nitrite

  • Su-Juan Li
  • Meng-Meng Lv
  • Jing-Jing Meng
  • Ling-Zhi Zhao
Original Paper
  • 196 Downloads

Abstract

A novel 3D composite of gold nanoparticle (AuNP)-decorated MnO2-graphene (GP)-carbon nanotube (CNT)-modified glassy carbon electrode (GCE) was fabricated by drop casting the as-synthesized AuNP/MnO2-GP-CNT suspension onto the surface of GCE. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images indicate the successful formation of AuNPs/MnO2-GP-CNT composite step by step from the precursor of CNTs. The cyclic voltammetry (CV) results show the AuNPs/MnO2-GP-CNTs/GCE exhibits superior electrocatalytic activity towards oxidation of nitrite in a 0.1 M phosphate-buffered saline (PBS, pH 7.0) compared to the MnO2-GP-CNTs/GCE. The result of amperometric response indicates that the AuNPs/MnO2-GP-CNTs/GCE can be used to determine nitrite concentration in a wide linear range of 1.0 and 2896 μM with a detection limit of 0.05 μM. The developed method can be successfully applied for determination of nitrite in water samples.

Keywords

Nitrite MnO2 Gold nanoparticle Graphene Carbon nanotube 

Notes

Funding information

This work was supported by the grants from the National Natural Science Foundation of China (21105002), the fund project for Young Scholar sponsored by Henan province (14HASTIT012), and for Henan Key Technologies R&D Program (122102310516, 12B150002).

References

  1. 1.
    Huang YG, Ji JD, Hou QN (1996) A study on carcinogenesis of endogenous nitrite and nitrosamine, and prevention of cancer. Mutat Res 358(1):7–14.  https://doi.org/10.1016/0027-5107(96)00087-5 CrossRefPubMedGoogle Scholar
  2. 2.
    Amine A, Palleschi G (2004) Phosphate, nitrate, and sulfate biosensors. Anal Lett 37(1):1–19.  https://doi.org/10.1081/AL-120027770 CrossRefGoogle Scholar
  3. 3.
    Lijinsky W, Epstein SS (1970) Nitrosamines as environmental carcinogens. Nature 225(5227):21–23.  https://doi.org/10.1038/225021a0 CrossRefPubMedGoogle Scholar
  4. 4.
    Silva SM, Mazo LH (1998) Differential pulse voltammetric determination of nitrite with gold ultramicroelectrode. Electroanalysis 10(17):1200–1203.  https://doi.org/10.1002/(SICI)1521-4109(199811)10:17<1200::AID-ELAN1200>3.0.CO;2-5 CrossRefGoogle Scholar
  5. 5.
    Merusi C, Corradini C, Cavazza A, Borromei C, Salvadeo P (2010) Determination of nitrates, nitrites and oxalates in food products by capillary electrophoresis with pH-dependent electroosmotic flow reversal. Food Chem 120(2):615–620.  https://doi.org/10.1016/j.foodchem.2009.10.035 CrossRefGoogle Scholar
  6. 6.
    Gao F, Zhang L, Wang L, She SK, Zhu CQ (2005) Ultrasensitive and selective determination of trace amounts of nitrite ion with a novel fluorescence probe mono[6-N(2-carboxy-phenyl)]-β-cyclodextrin. Anal Chim Acta 533: 25–29, 1.  https://doi.org/10.1016/j.aca.2004.10.082 CrossRefGoogle Scholar
  7. 7.
    Prusisz B, Jaskiewicz L, Pohl P (2006) High-performance ion chromatography assessment of inorganic and organic nitrogen fractions in potatoes. Microchim Acta 156(3-4):219–223.  https://doi.org/10.1007/s00604-006-0580-3 CrossRefGoogle Scholar
  8. 8.
    Nagababu E, Rifkind JM (2007) Measurement of plasma nitrite by chemiluminescence without interference of S-, N-nitroso and nitrated species. Free Radic Biol Med 42(8):1146–1154.  https://doi.org/10.1016/j.freeradbiomed.2006.12.029 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Hanajiri RK, Martin RS, Lunte SM (2002) Indirect measurement of nitric oxide production by monitoring nitrate and nitrite using microchip electrophoresis with electrochemical detection. Anal Chem 74(24):6370–6377.  https://doi.org/10.1021/ac0204000 CrossRefGoogle Scholar
  10. 10.
    Zhang D, Fang Y, Miao Z, Ma M, Du X, Takahashi S, J-i A, Chen Q (2013) Direct electrodeposion of reduced graphene oxide and dendritic copper nanoclusters on glassy carbon electrode for electrochemical detection of nitrite. Electrochi Acta 107:656–663.  https://doi.org/10.1016/j.electacta.2013.06.015 CrossRefGoogle Scholar
  11. 11.
    Dong H, Fang Z, Yang T, Yu Y, Wang D, Chou K-C, Hou X (2016) Single crystalline 3C-SiC whiskers used for electrochemical detection of nitrite under neutral condition. Ionics 22(8):1493–1500.  https://doi.org/10.1007/s11581-016-1666-5 CrossRefGoogle Scholar
  12. 12.
    Zhang Y, Chen P, Wen F, Huang C, Wang H (2016) Construction of polyaniline/molybdenum sulfide nanocomposite: characterization and its electrocatalytic performance on nitrite. Ionics 22(7):1095–1102.  https://doi.org/10.1007/s11581-015-1634-5 CrossRefGoogle Scholar
  13. 13.
    Ömür T, Alanyalıoğlu M (2017) Amperometric nitrite sensor based on free-standing carbon nanotube/methylene blue composite paper. Ionics 23(12):3507–3516.  https://doi.org/10.1007/s11581-017-2142-6 CrossRefGoogle Scholar
  14. 14.
    Fan X, Lin P, Liang S, Hui N, Zhang R, Feng J, Xu G (2017) Gold nanoclusters doped poly(3,4-ethylenedioxythiophene) for highly sensitive electrochemical sensing of nitrite. Ionics 23(4):997–1003.  https://doi.org/10.1007/s11581-016-1865-0 CrossRefGoogle Scholar
  15. 15.
    Liu L, Cui H, An H, Zhai J, Pan Y (2017) Electrochemical detection of aqueous nitrite based on poly(aniline-co-o-aminophenol)-modified glassy carbon electrode. Ionics 23(6):1517–1523.  https://doi.org/10.1007/s11581-017-1972-6 CrossRefGoogle Scholar
  16. 16.
    Kozub BR, Rees NV, Compton RG (2010) Electrochemical determination of nitrite at a bare glassy carbon electrode; why chemically modify electrodes? Sens Actuat B 143(2):539–546.  https://doi.org/10.1016/j.snb.2009.09.065 CrossRefGoogle Scholar
  17. 17.
    Stortinia AM, Morettoa LM, Mardeganb Ongaroa AM, Ugoa P (2015) Arrays of copper nanowire electrodes: preparation, characterization and application as nitrate sensor. Sensors Actuators B Chem 207:186–192.  https://doi.org/10.1016/j.snb.2014.09.109 CrossRefGoogle Scholar
  18. 18.
    Miao P, Shen M, Ning L, Chen G, Yin Y (2011) Functionalization of platinum nanoparticles for electrochemical detection of nitrite. Anal Bioanal Chem 399(7):2407–2411.  https://doi.org/10.1007/s00216-010-4642-3 CrossRefPubMedGoogle Scholar
  19. 19.
    Yang J-H, Yang H, Liu S, Mao L (2015) Microwave-assisted synthesis graphite-supported Pd nanoparticles for detection of nitrite. Sensors Actuators B Chem 220:652–658.  https://doi.org/10.1016/j.snb.2015.05.118 CrossRefGoogle Scholar
  20. 20.
    Jiao S, Jin J, Wang L (2015) One-pot preparation of Au-RGO/PDDA nanocomposites and their application for nitrite sensing. Sensors Actuators B Chem 208:36–42.  https://doi.org/10.1016/j.snb.2014.11.020 CrossRefGoogle Scholar
  21. 21.
    Li S-J, Zhao G-Y, Zhang R-X, Hou Y-L, Liu L, Pang H (2013) A sensitive and selective nitrite sensor based on a glassy carbon electrode modified with gold nanoparticles and sulfonated graphene. Microchim Acta 180(9-10):821–827.  https://doi.org/10.1007/s00604-013-0999-2 CrossRefGoogle Scholar
  22. 22.
    Yang J, Yang L, Ye H, Zhao F, Zeng B (2016) Highly dispersed AuPd alloy nanoparticles immobilized on UiO-66-NH2 metal-organic framework for the detection of nitrite. Electrochim Acta 219:647–654.  https://doi.org/10.1016/j.electacta.2016.10.071 CrossRefGoogle Scholar
  23. 23.
    Yuan B, Zhang J, Zhang R, Shi H, Wang N, Li J, Ma F, Zhang D (2016) Cu-based metal-organic framework as a novel sensing platform for the enhanced electro-oxidation of nitrite. Sensors Actuators B Chem 222:632–637.  https://doi.org/10.1016/j.snb.2015.08.100 CrossRefGoogle Scholar
  24. 24.
    Mani V, Periasamy AP, Chen S-M (2012) Highly selective amperometric nitrite sensor based on chemically reduced graphene oxide modified electrode. Electrochem Commun 17:75–78.  https://doi.org/10.1016/j.elecom.2012.02.009 CrossRefGoogle Scholar
  25. 25.
    Li X-R, Liu J, Kong F-Y, Liu X-C, J-J X, Chen H-Y (2012) Potassium-doped graphene for simultaneous determination of nitrite and sulfite in polluted water. Electrochem Commun 20:109–112.  https://doi.org/10.1016/j.elecom.2012.04.014 CrossRefGoogle Scholar
  26. 26.
    Wang H, Chen P, Wen F, Zhu Y, Zhang Y (2015) Flower-like Fe2O3@MoS2 nanocomposite decorated glassy carbon electrode for the determination of nitrite. Sensors Actuators B Chem 220:749–754.  https://doi.org/10.1016/j.snb.2015.06.016 CrossRefGoogle Scholar
  27. 27.
    Meng Z, Liu B, Zheng J, Sheng Q, Zhang H (2011) Electrodeposition of cobalt oxide nanoparticles on carbon nanotubes, and their electrocatalytic properties for nitrite electrooxidation. Microchim Acta 175(3-4):251–257.  https://doi.org/10.1007/s00604-011-0688-y CrossRefGoogle Scholar
  28. 28.
    Haldorai Y, Kim JY, Ezhil Vilian AT, Heo NS, Huh YS, Han Y-K (2016) An enzyme-free electrochemical sensor based on reduced graphene oxide/Co3O4 nanospindle composite for sensitive detection of nitrite. Sensors Actuators B Chem 227:92–99.  https://doi.org/10.1016/j.snb.2015.12.032 CrossRefGoogle Scholar
  29. 29.
    Cui L, Pu T, Liu Y, He X (2013) Layer-by-layer construction of graphene/cobalt phthalocyanine composite film on activated GCE for application as a nitrite sensor. Electrochim Acta 88:559–564.  https://doi.org/10.1016/j.electacta.2012.10.127 CrossRefGoogle Scholar
  30. 30.
    Cui L, Zhu J, Meng X, Yin H, Pan X, Ai S (2012) Controlled chitosan coated prussian blue nanoparticles with the mixture of graphene nanosheets and carbon nanoshperes as a redox mediator for the electrochemical oxidation of nitrite. Sensors Actuators B Chem 161(1):641–647.  https://doi.org/10.1016/j.snb.2011.10.083 CrossRefGoogle Scholar
  31. 31.
    Lin C-Y, Balamurugan A, Lai Y-H, Ho K-C (2010) A novel poly(3,4-ethylenedioxythiophene)/iron phthalocyanine/multi-wall carbon nanotubes nanocomposite with high electrocatalytic activity for nitrite oxidation. Talanta 82(5):1905–1911.  https://doi.org/10.1016/j.talanta.2010.08.010 CrossRefPubMedGoogle Scholar
  32. 32.
    Lin Y, Zhou Q, Tang D, Niessner R, Knopp D (2017) Signal-on photoelectrochemical immunoassay for aflatoxin B1 based on enzymatic product-etching MnO2 nanosheets for dissociation of carbon dots. Anal Chem 89(10):5637–5645.  https://doi.org/10.1021/acs.analchem.7b00942 CrossRefGoogle Scholar
  33. 33.
    Chen J, Zhang W-D, Ye J-S (2008) Nonenzymatic electrochemical glucose sensor based on MnO2/MWNTs nanocomposite. Electrochem Commun 10(9):1268–1271.  https://doi.org/10.1016/j.elecom.2008.06.022 CrossRefGoogle Scholar
  34. 34.
    Ye D, Li H, Liang G, Luo J, Zhang X, Zhang S, Chen H, Kong J (2013) A three-dimensional hybrid of MnO2/graphene/carbon nanotubes based sensor for determination of hydrogen-peroxide in milk. Electrochim Acta 109:195–200.  https://doi.org/10.1016/j.electacta.2013.06.119 CrossRefGoogle Scholar
  35. 35.
    ZL W, Li CK, JG Y, Chen XQ (2017) MnO2/reduced graphene oxide nanoribbons: facile hydrothermal preparation and their application in amperometric detection of hydrogen peroxide. Sensors Actuators B Chem 239:544–552CrossRefGoogle Scholar
  36. 36.
    Xu B, Ye ML, YX Y, Zhang WD (2010) A highly sensitive hydrogen peroxide amperometric sensor based on MnO2-modified vertically aligned multiwalled carbon nanotubes. Anal Chim Acta 674(1):20–26.  https://doi.org/10.1016/j.aca.2010.06.004 CrossRefPubMedGoogle Scholar
  37. 37.
    Haldorai Y, Giribabu K, Hwang S-K, Kwak CH, Huh YS, Han Y-K (2016) Facile synthesis of a-MnO2 nanorod/graphene nanocomposite paper electrodes using a 3D precursor for supercapacitors and sensing platform to detect 4-nitrophenol. Electrochim Acta 222:717–727.  https://doi.org/10.1016/j.electacta.2016.11.028 CrossRefGoogle Scholar
  38. 38.
    Lei J, Lu X, Wang W, Bian X, Xue Y, Wang C, Li L (2012) Fabrication of MnO2/graphene oxide composite nanosheets and their application in hydrazine detection. RSC Adv 2(6):2541–2544.  https://doi.org/10.1039/c2ra01065h CrossRefGoogle Scholar
  39. 39.
    Mahmoudian MR, Alias Y, Basirun WJ, Woi PM, Sookhakian M (2014) Facile preparation of MnO2 nanotubes/reduced graphene oxide nanocomposite for electrochemical sensing of hydrogen peroxide. Sensors Actuators B Chem 201:526–534.  https://doi.org/10.1016/j.snb.2014.05.030 CrossRefGoogle Scholar
  40. 40.
    Li Y, Ye D, Liu W, Shi B, Guo R, Pei H, Xie J (2017) A three-dimensional core-shell nanostructured composite of polypyrrole wrapped MnO2/reduced graphene oxide/carbon nanotube for high performance lithium ion batteries. J Colloid Interface Sci 493:241–248.  https://doi.org/10.1016/j.jcis.2017.01.008 CrossRefPubMedGoogle Scholar
  41. 41.
    Han Y, Zheng J, Dong S (2013) A novel nonenzymatic hydrogen peroxide sensor based on Ag-MnO2-MWCNTs nanocomposites. Electrochim Acta 90:35–43.  https://doi.org/10.1016/j.electacta.2012.11.117 CrossRefGoogle Scholar
  42. 42.
    Zhang C, Zhang Y, Miao Z, Ma M, Du X, Lin J, Han B, Takahashi S, Anzai J, Chen Q (2016) Dual-function amperometric sensors based on poly(diallydimethylammoniun chloride)-functionalized reduced graphene oxide/manganese dioxide/gold nanoparticles nanocomposite. Sensors Actuators B Chem 222:663–673.  https://doi.org/10.1016/j.snb.2015.08.114 CrossRefGoogle Scholar
  43. 43.
    Bagheri H, Pajooheshpour N, Jamali B, Amidi S, Hajian A, Khoshsafar H (2017) A novel electrochemical platform for sensitive and simultaneous determination of dopamine, uric acid and ascorbic acid based on Fe3O4-SnO2-Gr ternary nanocomposite. Microchem J 131:120–129.  https://doi.org/10.1016/j.microc.2016.12.006 CrossRefGoogle Scholar
  44. 44.
    Zeinali H, Bagheri H, Monsef-Khoshhesab Z, Khoshsafar H, Hajian A (2017) Nanomolar simultaneous determination of tryptophan and melatonin by a new ionic liquid carbon paste electrode modified with SnO2-Co3O4@rGO nanocomposite. Mater Sci Eng C 71:386–394.  https://doi.org/10.1016/j.msec.2016.10.020 CrossRefGoogle Scholar
  45. 45.
    Bagheri H, Khoshsafar H, Afkhami A, Amidi S (2016) Sensitive and simple simultaneous determination of morphine and codeine using a Zn2SnO4 nanoparticle/graphene composite modified electrochemical sensor. New J Chem 40(8):7102–7112.  https://doi.org/10.1039/C6NJ00505E CrossRefGoogle Scholar
  46. 46.
    Bagheri H, Arab SM, Khoshsafar H, Afkhami A (2015) A novel sensor for sensitive determination of atropine based on a Co3O4-reduced graphene oxide modified carbon paste electrode. New J Chem 39(5):3875–3881.  https://doi.org/10.1039/C5NJ00133A CrossRefGoogle Scholar
  47. 47.
    Zu M, Li Q, Wang G, Byun JH, Chou TW (2013) Carbon nanotube fiber based stretchable conductor. Adv Funct Mater 23(7):789–793.  https://doi.org/10.1002/adfm.201202174 CrossRefGoogle Scholar
  48. 48.
    Hashemi P, Afkhami A, Bagheri H, Amidi S, Madrakian T (2017) Fabrication of a novel impedimetric sensor based on L-cysteine/Cu(II) modified gold electrode for sensitive determination of ampyra. Anal Chim Acta 984:185–192.  https://doi.org/10.1016/j.aca.2017.06.038 CrossRefPubMedGoogle Scholar
  49. 49.
    Shiri S, Pajouheshpoor N, Khoshsafar H, Amidi S, Bagheri H (2017) Electrochemical sensor for the simultaneous determination of rifampicin and isoniazid using a C-dots@CuFe2O4 nanocomposite modified carbon paste electrode. New J Chem 41(24):15564–15573.  https://doi.org/10.1039/C7NJ03029K CrossRefGoogle Scholar
  50. 50.
    Sepehri Z, Bagheri H, Ranjbari E, Amiri-Aref M, Amidi S, Rouini MR, Ardakani YH (2017) Simultaneous electrochemical determination of isoniazid and ethambutol using poly-melamine/electrodeposited gold nanoparticles modified pre-anodized glassy carbon electrode. Ionics.  https://doi.org/10.1007/s11581-017-2263-y CrossRefGoogle Scholar
  51. 51.
    Amidi S, Hosseinzadeh Ardakani Y, Amiri-Aref M, Ranjbari E, Sepehri Z, Bagheri H (2017) Sensitive electrochemical determination of rifampicin using gold nanoparticles/poly-melamine nanocomposite. RSC Adv 7(64):40111–40118.  https://doi.org/10.1039/C7RA04865C CrossRefGoogle Scholar
  52. 52.
    Bagheri H, Hajian A, Rezaei M, Shirzadmehr A (2017) Composite of Cu msetal nanoparticles-multiwall carbon nanotubes-reduced graphene oxide as a novel and high performance platform of the electrochemical sensor for simultaneous determination of nitrite and nitrate. J Hazard Mater 324(Pt B):762–772.  https://doi.org/10.1016/j.jhazmat.2016.11.055 CrossRefPubMedGoogle Scholar
  53. 53.
    Chen X, Wu G, Cai Z, Oyama M, Chen X (2014) Advances in enzyme-free electrochemical sensors for hydrogen peroxide, glucose, and uric acid. Microchim Acta 181(7-8):689–705.  https://doi.org/10.1007/s00604-013-1098-0 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Su-Juan Li
    • 1
  • Meng-Meng Lv
    • 1
  • Jing-Jing Meng
    • 1
  • Ling-Zhi Zhao
    • 1
  1. 1.Henan Province Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical EngineeringAnyang Normal UniversityAnyangChina

Personalised recommendations