Advertisement

Ionics

, Volume 24, Issue 8, pp 2193–2198 | Cite as

Spray pyrolysis-deposited TiO2 thin films as high-performance lithium ion battery anodes

  • Binitha Gangaja
  • Anupriya K. Haridas
  • Shantikumar Nair
  • Dhamodaran Santhanagopalan
Original Paper
Part of the following topical collections:
  1. 1st World Conference on Solid Electrolytes for Advanced Applications: Garnets and Competitors

Abstract

Focusing on additive-free electrodes, thin films are of typical interest as electrodes for lithium ion battery application. Herein, we report the fabrication of TiO2 thin films by spray pyrolysis deposition technique. X-ray diffraction and transmission electron microscopic analysis confirms the formation of anatase TiO2. Electrochemical evaluation of these sub-micron TiO2 thin films exhibits high-rate performance and long cycling stability. At 1C rate (1C = 335 mA/g), the electrode delivered discharge capacity of 247 mAh/g allowing about 0.74 lithium into the structure. The electrodes also delivered specific capacities of 122 and 72 mAh/g at 10 and 30C rates, respectively. Without conductive additives, this excellent performance can be attributed to the nanosize effect of TiO2 particles combined with the uniform porous architecture of the electrode. Upon cycling at high rates (10 and 30C), the electrode exhibited excellent cycling stability and retention, specifically only < 0.6% capacity loss per cycle over 2500 cycles.

Keywords

Anodes Li-ion batteries Electrochemical characterizations Spinel Thin-films 

Notes

Acknowledgements

Infrastructural support from Amrita Vishwa Vidyapetham is greatly acknowledged. We also thank Dr. A. Sreekumaran Nair for his help. DS acknowledges SERB, India, for the award of Ramanujan fellowship (Ref: SB/S2/RJ-100/2014).

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    Navone C, Pereira-Ramos JP, Baddour-Hadjean R, Salot R (2010) Lithiated c-V2O5 thin-film as positive electrode for rocking-chair solid-state lithium microbattery. Ionics (Kiel) 16(7):577–580.  https://doi.org/10.1007/s11581-010-0460-z CrossRefGoogle Scholar
  2. 2.
    Li J, Daniel C, Wood D (2011) Materials processing for lithium-ion batteries. J Power Sources 196(5):2452–2460.  https://doi.org/10.1016/j.jpowsour.2010.11.001 CrossRefGoogle Scholar
  3. 3.
    Haridas AK, Gangaja B, Srikrishnarka P, Unni GE, Nair AS, Nair SV, Santhanagopalan D (2017) Spray pyrolysis-deposited nanoengineered TiO2 thick films for ultra-high areal and volumetric capacity lithium ion battery applications. J Power Sources 345:50–58.  https://doi.org/10.1016/j.jpowsour.2017.01.136 CrossRefGoogle Scholar
  4. 4.
    Bai Y, Knittlmayer C, Gledhill S (2009) Preparation and characterization of Li2CoMn3O8 thin film cathodes for high energy lithium batteries. Ionics (Kiel) 15(1):11–17.  https://doi.org/10.1007/s11581-008-0287-z CrossRefGoogle Scholar
  5. 5.
    Chi K, Zhang Z, Xi J, Huang Y, Xiao F, Wang S, Liu Y (2014) Freestanding graphene paper supported three-dimensional porous graphene-polyaniline nanocomposite synthesized by inkjet printing and in flexible all-solid-state supercapacitor. ACS Appl Mater Interfaces 6(18):16312–16319.  https://doi.org/10.1021/am504539k CrossRefGoogle Scholar
  6. 6.
    Bates JB, Dudney NJ, Neudecker B et al (2000) Thin-film lithium and lithium-ion batteries. Solid State Ionics 135(1-4):33–45.  https://doi.org/10.1016/S0167-2738(00)00327-1 CrossRefGoogle Scholar
  7. 7.
    Magasinski A, Dixon P, Hertzberg B, Kvit A, Ayala J, Yushin G (2010) High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nat Mater 9(5):461–461.  https://doi.org/10.1038/nmat2749 CrossRefGoogle Scholar
  8. 8.
    Chou SL, Wang JZ, Liu HK, Dou SX (2008) Electrochemical deposition of porous Co3O4 nanostructured thin film for lithium-ion battery. J Power Sources 182(1):359–364.  https://doi.org/10.1016/j.jpowsour.2008.03.083 CrossRefGoogle Scholar
  9. 9.
    Takahashi M, Tani J, Kido H, Hayashi A, Tadanaga K, Tatsumisago M (2011) Thin film electrode materials Li4Ti5O12 and LiCoO2 prepared by spray pyrolysis method. IOP Conf Ser Mater Sci Eng 18(12):122004.  https://doi.org/10.1088/1757-899X/18/12/122004 CrossRefGoogle Scholar
  10. 10.
    Demirkan MT, Trahey L, Karabacak T (2016) Low-density silicon thin films for lithium-ion battery anodes. Thin Solid Films 600:126–130.  https://doi.org/10.1016/j.tsf.2016.01.029 CrossRefGoogle Scholar
  11. 11.
    He B-L, Dong B, Li H-L (2007) Preparation and electrochemical properties of Ag-modified TiO2 nanotube anode material for lithium–ion battery. Electrochem Commun 9(3):425–430.  https://doi.org/10.1016/j.elecom.2006.10.008 CrossRefGoogle Scholar
  12. 12.
    Wang D, Choi D, Li J, Yang Z, Nie Z, Kou R, Hu D, Wang C, Saraf LV, Zhang J, Aksay IA, Liu J (2009) Self-assembled TiO2-graphene hybrid nanostructures for enhanced li-ion insertion. ACS Nano 3(4):907–914.  https://doi.org/10.1021/nn900150y CrossRefGoogle Scholar
  13. 13.
    Aslan S, Guler MO, Cevher O, Akbulut H (2012) Nano crystalline TiO2; thin films as negative electrodes for lithium ion batteries. J Nanosci Nanotechnol 12(12):9248–9253.  https://doi.org/10.1166/jnn.2012.6749 CrossRefGoogle Scholar
  14. 14.
    Chiu K-F, Lin KM, Leu HJ, Chen CL, Lin CC (2012) Fabrication and characterization of nano-crystalline TiO2 thin film electrodes for lithium ion batteries. J Electrochem Soc 159(3):A264–A268.  https://doi.org/10.1149/2.055203jes CrossRefGoogle Scholar
  15. 15.
    Wang J, Zhou Y, Hu Y (2011) Facile synthesis of nanocrystalline TiO2 mesoporous microspheres for lithium-ion batteries. J Phys Chem 115(5):2529–2536.  https://doi.org/10.1021/jp1087509
  16. 16.
    Yu Y, Gu L, Dhanabalan A, Chen CH, Wang C (2009) Three-dimensional porous amorphous SnO2 thin films as anodes for Li-ion batteries. Electrochim Acta 54(28):7227–7230.  https://doi.org/10.1016/j.electacta.2009.07.028 CrossRefGoogle Scholar
  17. 17.
    Göpel W, Anderson JA, Frankel D, Jaehnig M, Phillips K, Schäfer JA, Rocker G (1984) Surface defects of TiO2 (110): a combined XPS, XAES AND ELS study. Surf Sci 139(2-3):333–346.  https://doi.org/10.1016/0039-6028(84)90054-2 CrossRefGoogle Scholar
  18. 18.
    Pan D, Huang H, Wang X, Wang L, Liao H, Li Z, Wu M (2014) C-axis preferentially oriented and fully activated TiO2 nanotube arrays for lithium ion batteries and supercapacitors. J Mater Chem A 2(29):11454–11464.  https://doi.org/10.1039/c4ta01613k CrossRefGoogle Scholar
  19. 19.
    Madhusudanan SP, Gangaja B, Shyla AG, Nair AS, Nair SV, Santhanagopalan D (2017) Sustainable chemical synthesis for phosphorus-doping of TiO2 nanoparticles by upcycling human urine and impact of doping on energy applications. ACS Sustain Chem Eng 5(3):2393–2399.  https://doi.org/10.1021/acssuschemeng.6b02722 CrossRefGoogle Scholar
  20. 20.
    Acevedo-Peña P, Haro M, Rincón ME, Bisquert J, Garcia-Belmonte G (2014) Facile kinetics of Li-ion intake causes superior rate capability in multiwalled carbon nanotube@ TiO2 nanocomposite battery anodes. J Power Sources 268:397–403.  https://doi.org/10.1016/j.jpowsour.2014.06.058 CrossRefGoogle Scholar
  21. 21.
    Zheng H, Ncube NM, Raju K, Mphahlele N, Mathe M (2016) The effect of polyaniline on TiO2 nanoparticles as anode materials for lithium ion batteries. Spring 5(1):630.  https://doi.org/10.1186/s40064-016-1908-z CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Binitha Gangaja
    • 1
  • Anupriya K. Haridas
    • 1
    • 2
  • Shantikumar Nair
    • 1
  • Dhamodaran Santhanagopalan
    • 1
  1. 1.Centre for Nanosciences and Molecular Medicine, Amrita Vishwa VidyapeethamKochiIndia
  2. 2.Department of Materials Engineering and Convergence TechnologyGyeongsang National UniversityJinjuRepublic of Korea

Personalised recommendations