, Volume 24, Issue 8, pp 2335–2342 | Cite as

Electrochemical impedance spectroscopic studies on aging-dependent electrochemical degradation of p-toluene sulfonic acid-doped polypyrrole thin film

  • C. Justin Raj
  • Murugesan Rajesh
  • Ramu Manikandan
  • Seungil Park
  • Jeong Hoon Park
  • Kook Hyun Yu
  • Byung Chul KimEmail author
Original Paper


The conducting polymer polypyrrole thin film was galvanostatically polymerized on stainless steel substrate for the supercapacitor electrode. The electrochemical stability of the electrode was monitored each 30 days of aging up to 90 days. The FTIR analysis showed an increase in intensity of the absorption peaks, especially high growth of the carbonyl peaks after 90 days of aging. The electrochemical capacitance degradation of the electrode was studied using cyclic voltammetric and galvanostatic charge/discharge analysis in 1 M Na2SO4 electrolyte, which showed ~ 53% of fading in the initial specific capacitance value after 90 days. Further, the electrochemical degradation of polypyrrole electrodes was analyzed in detail using electrochemical impedance spectroscopy. The analysis showed a large increase in the internal resistance and low-power deliverability of the electrode with respect to aging as the main reasons for the degradation of specific capacitance of the polypyrrole electrode.


Polypyrrole Impedance spectroscopy Supercapacitor Charge transfer resistance Polymer degradation 



The authors would like to acknowledge authorities of Dongguk University, Seoul, for their moral and financial support.


  1. 1.
    Lee M, Balasingam SK, Jeong HY, Hong WG, Lee HBR, Kim BH, Jun Y (2015) One-step hydrothermal synthesis of graphene decorated V2O5 nanobelts for enhanced electrochemical energy storage. Sci Rep 5(1):8151. CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Balasingam SK, Lee JS, Jun Y (2015) Few-layered MoSe2 nanosheets as an advanced electrode material for supercapacitors. Dalton Trans 44(35):15491–15498. CrossRefPubMedGoogle Scholar
  3. 3.
    Augustyn V, Simon P, Dunn B (2014) Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ Sci 7(5):1597–1614. CrossRefGoogle Scholar
  4. 4.
    Brousse T, Belanger D, Long JW (2015) To be or not to be pseudocapacitive? J Electrochem Soc 162(5):A5185–A5189. CrossRefGoogle Scholar
  5. 5.
    Lota K, Lota G, Sierczynska A, Acznik I (2015) Carbon/polypyrrole composites for electrochemical capacitors. Synth Met 203:44–48. CrossRefGoogle Scholar
  6. 6.
    Balamuralitharan B, Karthick SN, Balasingam SK, Hemalatha KV, Selvam S, Raj JA, Prabakar K, Jun Y, Kim H-J (2017) Hybrid reduced graphene oxide/manganese diselenide cubes: a new electrode material for supercapacitors. Energy Technol 5(11):1953–1962. CrossRefGoogle Scholar
  7. 7.
    Balasingam SK, Lee JS, Jun Y (2016) Molybdenum diselenide/reduced graphene oxide based hybrid nanosheets for supercapacitor applications. Dalton Trans 45(23):9646–9653. CrossRefPubMedGoogle Scholar
  8. 8.
    Kim BC, Rajesh M, Jang HS, Yu KH, Kim S-J, Park SY, Raj CJ (2016) Facile synthesis and capacitive properties of nickel–cobalt binary metal oxide nanoaggregates via oxalate route. J Alloys Compd 674:376–383. CrossRefGoogle Scholar
  9. 9.
    Raj CJ, Kim BC, Cho W-J, Lee W-G, Seo Y, Yu K-H (2014) Electrochemical capacitor behavior of copper sulfide (CuS) nanoplatelets. J Alloys Compd 586:191–196CrossRefGoogle Scholar
  10. 10.
    Rajesh M, Raj CJ, Kim BC, Manikandan R, Kim S-J, Park SY, Lee K, Yu KH (2016) Expeditious and eco-friendly hydrothermal polymerization of PEDOT nanoparticles for binder-free high performance supercapacitor electrodes. RSC Adv 6(111):110433–110443. CrossRefGoogle Scholar
  11. 11.
    Balasingam SK, Thirumurugan A, Lee JS, Jun Y (2016) Amorphous MoSx thin-film-coated carbon fiber paper as a 3D electrode for long cycle life symmetric supercapacitors. Nano 8:11787–11791Google Scholar
  12. 12.
    Raj CJ, Kim BC, Cho WJ, Lee WG, Jung SD, Kim YH, Park SY, Yu KH (2015) Highly flexible and planar supercapacitors using graphite flakes/polypyrrole in polymer lapping film. ACS Appl Mater Interfaces 7(24):13405–13414. CrossRefPubMedGoogle Scholar
  13. 13.
    Ramya R, Sivasubramanian R, Sangaranarayanan MV (2013) Conducting polymers-based electrochemical supercapacitors—progress and prospects. Electrochim Acta 101:109–129. CrossRefGoogle Scholar
  14. 14.
    Zhang D, Zhang X, Chen Y, Yu P, Wang C, Ma Y (2011) Enhanced capacitance and rate capability of graphene/polypyrrole composite as electrode material for supercapacitors. J Power Sources 196(14):5990–5996. CrossRefGoogle Scholar
  15. 15.
    Rajesh M, Raj CJ, Kim BC, Cho B-B, Ko JM, Yu KH (2016) Supercapacitive studies on electropolymerized natural organic phosphate doped polypyrrole thin films. Electrochim Acta 220:373–383. CrossRefGoogle Scholar
  16. 16.
    Snook GA, Kao P, Best AS (2011) Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources 196(1):1–12. CrossRefGoogle Scholar
  17. 17.
    Bredas JL, Street GB (1985) Polarons, bipolarons, and solitons in conducting polymers. Acc Chem Res 18(10):309–315. CrossRefGoogle Scholar
  18. 18.
    Shi K, Zhitomirsky I (2013) Influence of current collector on capacitive behavior and cycling stability of Tiron doped polypyrrole electrodes. J Power Sources 240:42–49. CrossRefGoogle Scholar
  19. 19.
    Dubal DP, Lee SH, Kim JG, Kim WB, Lokhande CD (2012) Porous polypyrrole clusters prepared by electropolymerization for a high performance supercapacitor. J Mater Chem 22(7):3044–3052. CrossRefGoogle Scholar
  20. 20.
    Kumar A, Singh RK, Singh HK, Srivastava P, Singh R (2014) Enhanced capacitance and stability of p-toluenesulfonate doped polypyrrole/carbon composite for electrode application in electrochemical capacitors. J Power Sources 246:800–807. CrossRefGoogle Scholar
  21. 21.
    Kaynak A (2009) Decay of electrical conductivity in p-toluene sulfonate doped polypyrrole films. Fibers Polym 10(5):590–593. CrossRefGoogle Scholar
  22. 22.
    Kaynak A, Rintoul L, George GA (2000) Change of mechanical and electrical properties of polypyrrole films with dopant concentration and oxidative aging. Mater Res Bull 35(6):813–824. CrossRefGoogle Scholar
  23. 23.
    Kaynak A (2001) Aging studies on conducting polypyrrole. Fibers Polym 2(4):171–177. CrossRefGoogle Scholar
  24. 24.
    Amirudin A, Thierry D (1995) Application of electrochemical impedance spectroscopy to study the degradation of polymer-coated metals. Prog Org Coat 26(1):1–28. CrossRefGoogle Scholar
  25. 25.
    Roûberg K, Dunsch L (1999) Electrochemical impedance spectroscopy on conducting polymer membranes. Electrochim Acta 44(12):2061–2071. CrossRefGoogle Scholar
  26. 26.
    Shinde V, Gaikwad AB, Patil PP (2008) Synthesis and corrosion protection study of poly(o-ethylaniline) coatings on copper. Surf Coat Technol 202(12):2591–2602. CrossRefGoogle Scholar
  27. 27.
    Ramanavicius A, Finkelsteinas A, Cesiulis H, Ramanaviciene A (2010) Electrochemical impedance spectroscopy of polypyrrole based electrochemical immunosensor. Bioelectrochemistry 79(1):11–16. CrossRefPubMedGoogle Scholar
  28. 28.
    Thi Le HN, Garcia B, Deslouis C, Le Xuan Q (2001) Corrosion protection and conducting polymers: polypyrrole films on iron. Electrochim Acta 46(26-27):4259–4272. CrossRefGoogle Scholar
  29. 29.
    Raj CJ, Kim S-K, Yu K-H, Kim H-J (2014) Photo-electrochemical properties of variously-sized titanium dioxide nanoparticle-based dye-sensitized solar cells. Mater Sci Semicon Proc 26:354–359CrossRefGoogle Scholar
  30. 30.
    Taberna PL, Simon P, Fauvarque JF (2003) Electrochemical characteristics and impedance spectroscopy studies of carbon-carbon supercapacitors. J Electrochem Soc 150(3):A292. CrossRefGoogle Scholar
  31. 31.
    Van Schaftinghen T, Deslouis C, Hubin A, Terryn H (2006) Influence of the surface pre-treatment prior to the film synthesis, on the corrosion protection of iron with polypyrrole films. Electrochim Acta 51(8-9):1695–1703. CrossRefGoogle Scholar
  32. 32.
    Marchesi LF, Simoes FR, Pocrifka LA, Pereira EC (2011) Investigation of polypyrrole degradation using electrochemical impedance spectroscopy. J Phys Chem B 115(31):9570–9575. CrossRefPubMedGoogle Scholar
  33. 33.
    Noël V, Randriamahazaka H, Chevrot C (2003) Electrochemical impedance spectroscopy of an oxidized poly(3,4-ethylenedioxythiophene) in propylene carbonate solutions. J Electroanal Chem 558:41–48. CrossRefGoogle Scholar
  34. 34.
    Martini M, Matencio T, Alonso-Vante N, De Paoli M-A (2000) Electrochemical impedance spectroscopy of dodecylsulphate doped polypyrrole films in the dark and under illumination. J Braz Chem Soc 11(1):50–58. CrossRefGoogle Scholar
  35. 35.
    Ding H, Pan Z, Pigani L, Seeber R, Zanardi C (2001) p- and n-doping processes in polythiophene with reduced bandgap. An electrochemical impedance spectroscopy study. Electrochim Acta 46(17):2721–2732. CrossRefGoogle Scholar
  36. 36.
    Pavia DL, Lampman GM, Kriz GS, Vyvyan JR (2008) Introduction to spectroscopy, 4th edn. Brooks/Cole Cengage Learning, BelmontGoogle Scholar
  37. 37.
    Iroh JO, Wood GA (1998) Control of carbon fiber-polypyrrole interphases by aqueous electrochemical process. Compos B Eng 29(2):181–188. CrossRefGoogle Scholar
  38. 38.
    Street GB, Clarke TC, Krounbi M, Kanazawa K, Lee V, Pfluger P, Scott JC, Weiser G (1982) Preparation and characterization of neutral and oxidized polypyrrole films. Mol Cryst Liq Cryst 83(1):253–264. CrossRefGoogle Scholar
  39. 39.
    Liu AS, Bezerra MC, Cho LY (2009) Electrodeposition of polypyrrole films on aluminum surfaces from a p-toluene sulfonic acid medium. Mater Res 12(4):503–507. CrossRefGoogle Scholar
  40. 40.
    Kato H, Nishikawa O, Matsui T, Honma S, Kokado H (1991) Fourier transform infrared spectroscopy study of conducting polymer polypyrrole: higher order structure of electrochemically-synthesized film. J Phys Chem 95(15):6014–6016. CrossRefGoogle Scholar
  41. 41.
    Kim BC, Raj CJ, Cho WJ, Lee WG, Jeong HT, Yu KH (2014) Enhanced electrochemical properties of cobalt doped manganese dioxide nanowires. J Alloys Compd 617:491–497. CrossRefGoogle Scholar
  42. 42.
    Balasingam SK, Lee M, Kim BH, Lee JS, Jun Y (2017) Freeze-dried MoS2 sponge electrodes for enhanced electrochemical energy storage. Dalton Trans 46(7):2122–2128. CrossRefPubMedGoogle Scholar
  43. 43.
    Salari M, Konstantinov K, Liu HK (2011) Enhancement of the capacitance in TiO2 nanotubes through controlled introduction of oxygen vacancies. J Mater Chem 21(13):5128–5133. CrossRefGoogle Scholar
  44. 44.
    Kotz R, Carlen M (2000) Principles and applications of electrochemical capacitors. Electrochim Acta 45(15-16):2483–2498. CrossRefGoogle Scholar
  45. 45.
    Aradilla D, Azambuja D, Estrany F, Casas MT, Ferreira CA, Alemán C (2012) Hybrid polythiophene–clay exfoliated nanocomposites for ultracapacitor devices. J Mater Chem 22(26):13110. CrossRefGoogle Scholar
  46. 46.
    Fletcher S, Black VJ, Kirkpatrick I (2013) A universal equivalent circuit for carbon-based supercapacitors. J Solid State Electrochem 18:1377–1387CrossRefGoogle Scholar
  47. 47.
    Bisquert J, Garcia-Belmonte G, Bueno P, Longo E, Bulhoes LOS (1998) Impedance of constant phase element (CPE)-blocked diffusion in film electrodes. J Electroanal Chem 452(2):229–234. CrossRefGoogle Scholar
  48. 48.
    Portet C, Taberna PL, Simon P, Laberty-Robert C (2004) Modification of Al current collector surface by sol–gel deposit for carbon–carbon supercapacitor applications. Electrochim Acta 49(6):905–912. CrossRefGoogle Scholar
  49. 49.
    Fernández-Sánchez C, McNeil CJ, Rawson K (2005) Electrochemical impedance spectroscopy studies of polymer degradation: application to biosensor development. Trends Anal Chem 24(1):37–48. CrossRefGoogle Scholar
  50. 50.
    Portet C, Taberna PL, Simon P, Flahaut E (2005) Influence of carbon nanotubes addition on carbon–carbon supercapacitor performances in organic electrolyte. J Power Sources 139(1-2):371–378. CrossRefGoogle Scholar
  51. 51.
    Zhu J, Xu Y, Wang J, Lin J, Sun X, Mao S (2015) The effect of various electrolyte cations on electrochemical performance of polypyrrole/RGO based supercapacitors. Phys Chem Chem Phys 17(43):28666–28673. CrossRefPubMedGoogle Scholar
  52. 52.
    Abdulhakeem B, Farshad B, Damilola M, Fatemeh T, Mopeli F, Julien D, Ncholu M (2014) Morphological characterization and impedance spectroscopy study of porous 3D carbons based on graphene foam-PVA/phenol-formaldehyde resin composite as an electrode material for supercapacitors. RSC Adv 4(73):39066. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • C. Justin Raj
    • 1
  • Murugesan Rajesh
    • 1
  • Ramu Manikandan
    • 1
  • Seungil Park
    • 1
  • Jeong Hoon Park
    • 2
  • Kook Hyun Yu
    • 1
  • Byung Chul Kim
    • 1
    • 3
    Email author
  1. 1.Department of ChemistryDongguk University - SeoulSeoulRepublic of Korea
  2. 2.Radiation Instrumentation Research DivisionKorea Atomic Energy Research InstituteJeongeupRepublic of Korea
  3. 3.ARC Centre of Excellence for Electromaterials Science, IPRI, AIIM Facility, Innovation CampusUniversity of WollongongWollongongAustralia

Personalised recommendations