Advertisement

Ionics

, Volume 24, Issue 8, pp 2379–2398 | Cite as

Green electrolytes based on dextran-chitosan blend and the effect of NH4SCN as proton provider on the electrical response studies

  • M. F. Z. Kadir
  • M. H. Hamsan
Original Paper
  • 67 Downloads

Abstract

Dextran-chitosan blend added with ammonium thiocyanate (NH4SCN)-based solid polymer electrolytes are prepared by solution cast method. The interaction between the components of the electrolyte is verified by Fourier transform infrared (FTIR) analysis. The blend of 40 wt% dextran-60 wt% chitosan is found to be the most amorphous ratio. The room temperature conductivity of undoped 40 wt% dextran-60 wt% chitosan blend film is identified to be (3.84 ± 0.97) × 10−10 S cm−1. The inclusion of 40 wt.% NH4SCN to the polymer blend has optimized the room temperature conductivity up (1.28 ± 0.43) × 10−4 S cm−1. Result from X-ray diffraction (XRD) and differential scanning calorimetry (DSC) analysis shows that the electrolyte with the highest conductivity value has the lowest degree of crystallinity (χ c) and the glass transition temperature (T g), respectively. Temperature-dependence of conductivity follows Arrhenius theory. From transport analysis, the conductivity is noticed to be influenced by the mobility (μ) and number density (n) of ions. Conductivity trend is further verified by field emission scanning electron microscopy (FESEM) and dielectric results.

Keywords

Solid polymer electrolyte Dextran-chitosan blend Ammonium thiocyanate Ionic conductivity Dielectric 

Notes

Funding information

The authors thank the University of Malaya for the grant FP009-2015A and RP010B-13AFR awarded.

References

  1. 1.
    Ramesh S, Liew CW, Arof AK (2011) Ion conducting corn starch biopolymer electrolytes doped with ionic liquid 1- butyl-3-methylimidazolium hexafluorophosphate. J Non-Cryst Solids 357(21):3654–3660.  https://doi.org/10.1016/j.jnoncrysol.2011.06.030 CrossRefGoogle Scholar
  2. 2.
    Teoh KH, Chin-Shen L, Ramesh S (2014) Lithium ion conduction in corn starch based solid polymer electrolytes. Measurement 48:87–95.  https://doi.org/10.1016/j.measurement.2013.10.040 CrossRefGoogle Scholar
  3. 3.
    Shuhaimi NEA, Majid SR, Arof AK (2009) On complexation between methyl cellulose and ammonium nitrate. Mater Res Innov 13(3):239–242.  https://doi.org/10.1179/143307509X440406 CrossRefGoogle Scholar
  4. 4.
    Sudhakar YN, Selvakumar M, Bhat DK (2013) LiClO4-doped plasticized chitosan and poly(ethylene glycol) blend as biodegradable polymer electrolyte for supercapacitors. Ionics 19(2):277–285.  https://doi.org/10.1007/s11581-012-0745-5 CrossRefGoogle Scholar
  5. 5.
    Coughlan DC, Corrigan OI (2006) Drug–polymer interactions and their effect on thermoresponsive poly(N-isopropylacrylamide) drug delivery systems. Int J Pharm 313(1-2):163–174.  https://doi.org/10.1016/j.ijpharm.2006.02.005 CrossRefGoogle Scholar
  6. 6.
    Fadzallah IA, Majid SR, Careem MA, Arof AK (2014) Relaxation process in chitosan–oxalic acid solid polymer eletrolytes. Ionics 20(7):969–975.  https://doi.org/10.1007/s11581-013-1058-z CrossRefGoogle Scholar
  7. 7.
    Barsbay M, Guner A (2007) Miscibility of dextran and poly(ethylene glycol) in solid state: effect of the solvent choice. Carbohydr Polym 69(2):214–223.  https://doi.org/10.1016/j.carbpol.2006.09.028 CrossRefGoogle Scholar
  8. 8.
    Buraidah MH, Arof AK (2011) Characterization of chitosan/PVA blended electrolyte doped with NH4I. J Non-Cryst Solids 357(16-17):3261–3266.  https://doi.org/10.1016/j.jnoncrysol.2011.05.021 CrossRefGoogle Scholar
  9. 9.
    Hamsan MH, Shukur MF, Kadir MFZ (2017) The effect of NH4NO3 towards the conductivity enhancement and electrical behavior in methyl cellulose-starch blend based ionic conductors. Ionics 23(5):1137–1154.  https://doi.org/10.1007/s11581-016-1918-4 CrossRefGoogle Scholar
  10. 10.
    Nakajima H, Honma I (2002) Proton-conducting hybrid solid electrolytes for intermediate temperature fuel cells. Solid State Ionics 148(3-4):607–610.  https://doi.org/10.1016/S0167-2738(02)00127-3 CrossRefGoogle Scholar
  11. 11.
    Johan MR, Ting LM (2011) Structural, thermal and electrical properties of nano manganese-composite polymer electrolyte. Int J Electrochem Sci 6:4737–4738Google Scholar
  12. 12.
    Dong L, Guojing G, Jiao L (2013) Characterization of a dextran–coated layered double hydroxide acetylsalicylic acid delivery system and its pharmacokinetics in rabbit. Acta Pharm Sin B 3(6):400–407.  https://doi.org/10.1016/j.apsb.2013.09.003 CrossRefGoogle Scholar
  13. 13.
    Shukur MF (2015) Characterization of ion conducting solid biopolymer electrolytes based on starch-chitosan blend and application in electrochemical devices. Dissertation, University of Malaya, MalaysiaGoogle Scholar
  14. 14.
    Yin YJ, Yao KD, Cheng GX, Ma JB (1999) Properties of polyelectrolyte complex films of chitosan and gelatin. Polym Int 48(6):429–433.  https://doi.org/10.1002/(SICI)1097-0126(199906)48:6<429::AID-PI160>3.0.CO;2-1 CrossRefGoogle Scholar
  15. 15.
    Shukur MF, Ithnin R, Kadir MFZ (2014) Electrical properties of proton conducting solid biopolymer electrolytes based on starch–chitosan blend. Ionics 20(7):977–999.  https://doi.org/10.1007/s11581-013-1033-8 CrossRefGoogle Scholar
  16. 16.
    Cascone MG, Polacco G, Lazzeri L, Barbani N (1997) Dextran/poly ( acrylic acid ) mixtures as miscible blends. J App Polym Sci 66(11):2089–2094.  https://doi.org/10.1002/(SICI)1097-4628(19971219)66:11<2089::AID-APP4>3.0.CO;2-D CrossRefGoogle Scholar
  17. 17.
    Yusof YM, Shukur MF, Illias HA, Kadir MFZ (2014) Conductivity and electrical properties of corn starch–chitosan blend biopolymer electrolyte incorporated with ammonium iodide. Phys Scr 89(3):035701–035711.  https://doi.org/10.1088/0031-8949/89/03/035701 CrossRefGoogle Scholar
  18. 18.
    Sim LN, Majid SR, Arof AK (2012) FTIR studies of PEMA/PVdF-HFP blend polymer electrolyte system incorporated with LiCF3SO3 salt. Vib Spectrosc 58:57–66.  https://doi.org/10.1016/j.vibspec.2011.11.005 CrossRefGoogle Scholar
  19. 19.
    Kadir MFZ, Aspanut Z, Majid SR, Arof AK (2011) FTIR studies of plasticized poly(vinyl alcohol)–chitosan blend doped with NH4NO3 polymer electrolyte membrane. Spectrochim Acta A 78(3):1068–1074.  https://doi.org/10.1016/j.saa.2010.12.051 CrossRefGoogle Scholar
  20. 20.
    Shukur MF, Ithnin R, Illias HA, Kadir MFZ (2013) Proton conducting polymer electrolyte based on plasticized chitosan-PEO blend and application in electrochemical devices. Opt Mater 35(10):1834–1841.  https://doi.org/10.1016/j.optmat.2013.03.004 CrossRefGoogle Scholar
  21. 21.
    Mason RN, Hu L, Glatzhofer DT, Frech R (2010) Infrared spectroscopic and conductivity studies of poly(N-methylpropylenimine)/ lithium triflate electrolytes. Solid State Ionics 180(40):1626–1632.  https://doi.org/10.1016/j.ssi.2009.10.021 CrossRefGoogle Scholar
  22. 22.
    Hamsan MH, Shukur MF, Kadir MFZ (2017) NH4NO3 as charge carrier contributor in glycerolized potato starch-methyl cellulose blend-based polymer electrolyte and the application in electrochemical double-layer capacitor. Ionics 23:3429–3453Google Scholar
  23. 23.
    Ali AMM, Mohamed NS, Arof AK (1998) Polyethylene oxide (PEO)–ammonium sulfate ((NH4)2SO4) complexes and electrochemical cell performance. J Power Sources 74:35–141CrossRefGoogle Scholar
  24. 24.
    Kim HS, Shin JH, Moona SI, Kim KP (2003) Preparation of gel polymer electrolytes using PMMA interpenetrating polymeric network and their electrochemical performances. Electrochim Acta 48(11):1573–1578.  https://doi.org/10.1016/S0013-4686(03)00087-2 CrossRefGoogle Scholar
  25. 25.
    Chandra S, Hashimi SA, Prasad G (1990) Studies on ammonuim perchlorate doped polyethylene oxide polymer electrolyte. Solid State Ionics 40:651–654.  https://doi.org/10.1016/0167-2738(90)90090-E CrossRefGoogle Scholar
  26. 26.
    Hema M, Selvasekarapandian S, Arunkumar D, Sakunthala A, Nithya H (2009) FTIR, XRD and ac impedance spectroscopic study on PVA based polymer electrolyte doped with NH4X (X = Cl, Br, I). J Non-Cryst Solids 355(2):84–90.  https://doi.org/10.1016/j.jnoncrysol.2008.10.009 CrossRefGoogle Scholar
  27. 27.
    Buraidah MH, Teo LP, Majid SR, Arof AK (2009) Ionic conductivity by correlated barrier hopping in NH4I doped chitosan solid electrolyte. Physica B 404(8-11):1373–1379.  https://doi.org/10.1016/j.physb.2008.12.027 CrossRefGoogle Scholar
  28. 28.
    Salleh NS, Aziz SB, Aspanut Z, Kadir MFZ (2016) Electrical impedance and conduction mechanism analysis of biopolymer electrolytes based on methyl cellulose doped with ammonium iodide. Ionics 22:2157–2167Google Scholar
  29. 29.
    Selvasekarapandian S, Baskaran R, Hema M (2005) Complex AC impedance, transference number and vibrational spectroscopy studies of proton conducting PVAc–NH4SCN polymer electrolytes. Physica B 357(3-4):412–419.  https://doi.org/10.1016/j.physb.2004.12.007 CrossRefGoogle Scholar
  30. 30.
    Rice MJ, Roth WL (1972) Ionic transport in super ionic conductors: a theoretical model. J Solid State Chem 4(2):294–310.  https://doi.org/10.1016/0022-4596(72)90121-1 CrossRefGoogle Scholar
  31. 31.
    Pauling L, Broakway LO (1937) Carbon-carbon bond distances. The electron diffraction investigation of ethane, propane, isobutane, neopentane, cyclopropane, cyclopentane, cyclohexane, allene, ethylene, isobutene, tetramethylethylene, mesitylene, and hexamethylbenzene. Revised values of covalent radii. J Am Chem Soc.59:1223–1236Google Scholar
  32. 32.
    Ahmad NH, Isa MIN (2015) Proton conducting solid polymer electrolytes based carboxymethyl cellulose doped ammonium chloride: ionic conductivity and transport studies. Int J Plast Technol 19(1):47–55.  https://doi.org/10.1007/s12588-015-9110-7 CrossRefGoogle Scholar
  33. 33.
    Khanmirzaei MH, Ramesh S (2013) Ionic transport and FTIR properties of lithium iodide doped biodegradable Rice starch based polymer electrolytes. Int J Electrochem Sci 8:9977–9991Google Scholar
  34. 34.
    Winie T, Ramesh S, Arof AK (2009) Studies on the structure and transport properties of hexanoyl chitosan-based polymer electrolytes. Physica B 404(21):4308–4311.  https://doi.org/10.1016/j.physb.2009.08.004 CrossRefGoogle Scholar
  35. 35.
    Arof AK, Amirudin S, Yusof SZ, Noor IM (2014) A method based on impedance spectroscopy to determine transport properties of polymer electrolytes. Phys Chem Chem Phys 16(5):1856–1867.  https://doi.org/10.1039/c3cp53830c CrossRefGoogle Scholar
  36. 36.
    Selvasekarapandian S, Chithra DR (1999) Dielectric studies on a solid electrolyte AgI-PbBr2-Ag2O-B2O3 mater. Chem Phys 58:90–93Google Scholar
  37. 37.
    Iqbal MZ, Rafiuddin S (2016) Structural, electrical conductivity and dielectric behavior of Na2SO4–LDT composite solid electrolyte. J Adv Res 7(1):135–141.  https://doi.org/10.1016/j.jare.2015.04.002 CrossRefGoogle Scholar
  38. 38.
    Chandra A (2013) Synthesis and dielectric studies of PEO-PVP blended solid polymer. Indian J Pure Appl Phys 51:788–791Google Scholar
  39. 39.
    Sengwa RJ, Dhatarwal P, Choudhary S (2015) Effects of plasticizer and nanofiller on the dielectric dispersion and relaxation behaviour of polymer blend based solid polymer electrolytes. Curr App Phys 15(2):135–143.  https://doi.org/10.1016/j.cap.2014.12.003 CrossRefGoogle Scholar
  40. 40.
    Gurusiddappa J, Madhuri W, Suvarna RP, Dasan KP (2016) Conductivity and dielectric behavior of polyethylene oxide-lithium perchlorate solid polymer electrolyte films. Indian J Adv Chem Sci 4:14–19Google Scholar
  41. 41.
    Pradhan DK, Choudhary RNP, Samantaray BK (2009) Studies of dielectric and electrical properties of plasticized polymer nanocomposite electrolytes. Mater Chem Phys 115(2-3):557–561.  https://doi.org/10.1016/j.matchemphys.2009.01.008 CrossRefGoogle Scholar
  42. 42.
    Ramesh S, Arof AK (2001) Ionic conductivity studies of plasticized poly(vinyl chloride) polymer electrolytes. Mater Sci Eng B 85(1):11–15.  https://doi.org/10.1016/S0921-5107(01)00555-4 CrossRefGoogle Scholar
  43. 43.
    Khiar ASA, Puteh R, Arof AK (2006) Conductivity studies of a chitosan-based polymer electrolyte. Physica B 373(1):23–27.  https://doi.org/10.1016/j.physb.2005.10.104 CrossRefGoogle Scholar
  44. 44.
    Kobayashi T, Noguchi Y, Miyayama M (2005) Enhanced spontaneous polarization in super lattice structure Bi4Ti3O12−BaBi4Ti4O15 single crystal. Appl Phys Lett 86:01290CrossRefGoogle Scholar
  45. 45.
    Aziz SB, Abidin ZHZ, Arof AK (2010) Influence of silver ion reduction on electrical modulus parameters of solid polymer electrolyte based on chitosansilver triflate electrolyte membrane. XPRESS Polym Lett 4(5):300–310.  https://doi.org/10.3144/expresspolymlett.2010.38 CrossRefGoogle Scholar
  46. 46.
    Agrawal SL, Neelash R (2015) DMA and conductivity studies in PVA:NH4SCN:DMSO:MWNT nanocomposite polymer dried gel electrolytes. J Nanomaterials 2015:1–7.  https://doi.org/10.1155/2015/435625 CrossRefGoogle Scholar
  47. 47.
    Kadir MFZ (2010) Characteristics of proton conducting PVA-chitosan polymer blend electrolytes. Dissertation, University of Malaya, MalaysiaGoogle Scholar
  48. 48.
    Amran NNA, Manan NSA, Kadir MFZ (2016) The effect of LiCF3SO3 on the complexation with potato starch-chitosan blend polymer electrolytes. Ionics 22:1–12CrossRefGoogle Scholar
  49. 49.
    Danielle M, Yukyung J, Alexandra LH, Michael AW, Geoffrey WC, Nitash B (2016) Effect of monomer structure on ionic conductivity in a systematic set of polyester electrolytes. Solid State Ionics 289:118–124CrossRefGoogle Scholar
  50. 50.
    Yusof YM, Illias H, Shukur MF, Kadir MFZ (2017) Characterizations of starch chitosan blend based polymer electrolyte doped with ammonium iodide for application in proton batteries. Ionics 23:681–697Google Scholar
  51. 51.
    Sakurai K, Maegawa T, Takashi T (2000) Glass transition of chitosan and miscibility of chitosan/poly (N-vinyl pyyrolidone) blends. Polymer 41(19):7051–7056.  https://doi.org/10.1016/S0032-3861(00)00067-7 CrossRefGoogle Scholar
  52. 52.
    Yusof YM, Illias HA, Kadir MFZ (2014) Incorporation of NH4Br in PVA-chitosan blend-based polymer electrolyte and its effect on the conductivity and other electrical properties. Ionics 20(9):1235–1245.  https://doi.org/10.1007/s11581-014-1096-1 CrossRefGoogle Scholar
  53. 53.
    Rajendran S, Sivakumar M, Subadevi R (2004) Li-ion conduction of plasticized PVA solid polymer electrolytes complexed with various lithium salts. Solid State Ionics 167(3-4):335–339.  https://doi.org/10.1016/j.ssi.2004.01.020 CrossRefGoogle Scholar
  54. 54.
    Maria D, Georgiana M, Marian V, Catalin V, Viorica M (2012) Characterization of electron beam irradiated polyvinylpyrrolidone-dextran (PVP/DEX) blends. Solid State Phenom 188:102–108CrossRefGoogle Scholar
  55. 55.
    Netto CGT, Giametti JA, Job AE, Ferreira FC, Fonseca JLC, Pereira MR (2005) Thermal analysis of chitosan based networks. Carbohydr Polym 62(2):97–103.  https://doi.org/10.1016/j.carbpol.2005.02.022 CrossRefGoogle Scholar
  56. 56.
    Ohta M, Hirai S, Kato H, Sokolov VV, Bakovets VV (2009) Thermal decomposition of NH 4 SCN for preparation of Ln2 S 3 ( Ln ¼ La and Gd) by sulfurization. Mater Trans 50(7):1885–1889.  https://doi.org/10.2320/matertrans.M2009060 CrossRefGoogle Scholar
  57. 57.
    Karthikeyan S, Sikkanthar S, Selvasekarapandian S, Arunkumar D, Nithya H, Kawamura J (2016) Structural, electrical and electrochemical properties of polyacrylonitrile-ammonium hexaflurophosphate polymer electrolyte system. J Polym Res 23(3):51–61.  https://doi.org/10.1007/s10965-016-0952-2 CrossRefGoogle Scholar
  58. 58.
    Anuar NK, Yahaya Subban RH, Mohemed NS (2012) Properties of PEMA-NH4CF3SO3 added to BMATSFI ionic liquid. Materials 5(12):2609–2620.  https://doi.org/10.3390/ma5122609 CrossRefGoogle Scholar
  59. 59.
    Helan Flora X, Ulaganathan M, Rajendran S (2012) Influence of lithium salt concentration on PAN-PMMA blend polymer electrolytes. Int J Electrochem Sci 7:7451–7462Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Center for Foundation Studies in ScienceUniversity of MalayaKuala LumpurMalaysia
  2. 2.Institute of Graduate StudiesUniversity of MalayaKuala LumpurMalaysia

Personalised recommendations