Advertisement

Ionics

, Volume 24, Issue 8, pp 2187–2192 | Cite as

Ultra-rapid combustion synthesis of Na2FePO4F fluorophosphate host for Li-ion and Na-ion insertion

  • Lalit Sharma
  • Ankush Bhatia
  • Loïc Assaud
  • Sylvain Franger
  • Prabeer Barpanda
Original Paper
Part of the following topical collections:
  1. 1st World Conference on Solid Electrolytes for Advanced Applications: Garnets and Competitors

Abstract

Exploring soft-chemistry synthesis of Fe-based battery cathode materials, we have optimized combustion synthesis as an ultra-rapid approach to produce Na2FePO4F fluorophosphate cathode. It yields nanoscale, carbon-coated target product by annealing (at 600 °C) for just 1 min. The purity of the material crystallizing in the orthorhombic structure was confirmed by powder X-ray diffraction pattern and XPS analysis, while the morphology was studied by scanning electron microscopy. The as-synthesized material exhibits good electrochemical performance delivering a first discharge capacity of more than 70 mAh/g at C/10 rate versus both Li+/Li and Na+/Na, hence acting as an efficient host for both Li-ion and Na-ion insertion. Combustion synthesis can be employed as an economic route for synthesis and rapid screening of various phosphate-based insertion materials.

Keywords

Fluorophosphate Solution-combustion Nanometric particles Capacity 

Notes

Acknowledgements

The first author thanks the University Paris Sud/University Paris-Saclay (France) for a 3-month internship. PB thanks the Department of Atomic Energy (DAE) for a DAE-BRNS Young Scientists Research Award (YSRA). The authors acknowledge Lotfi Bessais, Diana Dragoe, Eric Riviere, and Rita Baddour-Hadjean for their kind help with Mössbauer, XPS, magnetic, and Raman measurements, respectively. Crystalline structure was illustrated using the VESTA software [20].

Funding information

The first author thanks the Ministry of Human Resource Development (Govt. of India) for financial support.

Compliance with ethical standards

Conflicts of interests

The authors declare that there are no competing interests.

Supplementary material

11581_2017_2376_MOESM1_ESM.pdf (231 kb)
ESM 1 (PDF 231 kb)

References

  1. 1.
    Dunn B, Kamath H, Tarascon JM (2011) Electrical energy storage for the grid: a battery of choices. Science 334(6058):928–935.  https://doi.org/10.1126/science.1212741 CrossRefPubMedGoogle Scholar
  2. 2.
    Yabuuchi N, Kubota K, Dahbi M, Komaba S (2014) Research development on sodium-ion batteries. Chem Rev 114(23):11636–11682.  https://doi.org/10.1021/cr500192f CrossRefPubMedGoogle Scholar
  3. 3.
    Slater MD, Kim D, Lee E, Johnson CS (2012) Sodium-ion batteries. Adv Func Mater 23(8):947–958.  https://doi.org/10.1002/adfm.201200691 CrossRefGoogle Scholar
  4. 4.
    Yabuuchi N, Komaba S (2014) Recent research progress on iron- and manganese-based positive electrode materials for rechargeable sodium batteries. Sci Technol Adv Mater 15(4):043501.  https://doi.org/10.1088/1468-6996/15/4/043501 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Ellis BL, Makahnouk WRM, Makimura Y, Toghill K, Nazar LF (2007) A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries. Nat Mater 6(10):749–753.  https://doi.org/10.1038/nmat2007 CrossRefPubMedGoogle Scholar
  6. 6.
    Recham N, Chotard JN, Dupont L, Djellab K, Armand M, Tarascon JM (2009) Ionothermal synthesis of sodium-based fluorophosphate cathode materials. J Electrochem Soc 156(12):A993–999.  https://doi.org/10.1149/1.3236480 CrossRefGoogle Scholar
  7. 7.
    Ellis BL, Makahnouk WRM, Rowan-Weetaluktuk WN, Ryan DH, Nazar LF (2012) Crystal Structure and Electrochemical Properties of A2MPO4F Fluorophosphates (A = Na, Li; M = Fe, Mn, Co, Ni). Chem Mater 22(3):1059–1070.  https://doi.org/10.1021/cm902023h CrossRefGoogle Scholar
  8. 8.
    Kawabe Y, Yabuuchi N, Kajiyama M, Fukuhara N, Inamasu T, Okuyama R, Nakai I, Koamaba S (2011) Synthesis and electrode performance of carbon coated Na2FePO4F for rechargeable Na batteries. Electrochem Commun 13(11):1225–1228.  https://doi.org/10.1016/j.elecom.2011.08.038 CrossRefGoogle Scholar
  9. 9.
    Law M, Ramar V, Balaya P (2015) Synthesis, characterisation and enhanced electrochemical performance of nanostructured Na2FePO4F for sodium batteries. RSC Adv 5(62):50155–50164.  https://doi.org/10.1039/C5RA07583A CrossRefGoogle Scholar
  10. 10.
    Cui D, Chen S, Han C, Ai C, Yuan L (2016) Carbothermal reduction synthesis of carbon coated Na2FePO4F for lithium ion batteries. J Power Sources 301:87–92.  https://doi.org/10.1016/j.jpowsour.2015.09.123 CrossRefGoogle Scholar
  11. 11.
    Sharma L, Nayak PK, Llave E, Chen H, Adams S, Aurbach D, Barpanda P (2017) Electrochemical and diffusional investigation of Na2FeIIPO4F fluorophosphate sodium insertion material obtained from FeIII precursor. ACS Appl Mater Interfaces 9(40):34961–34969.  https://doi.org/10.1021/acsami.7b10637 CrossRefPubMedGoogle Scholar
  12. 12.
    Barpanda P, Ye T, Chung SC, Yamada Y, Nishimura S, Yamada A (2012) Eco-efficient splash combustion synthesis of nanoscale pyrophosphate (Li2FeP2O7) positive-electrode using Fe(III) precursors. J Mater Chem 22(27):13455–13459.  https://doi.org/10.1039/c2jm32566g CrossRefGoogle Scholar
  13. 13.
    Barpanda P, Yamashita Y, Yamada Y, Yamada A (2013) High-throughput solution combustion synthesis of high-capacity LiFeBO3 cathode. J Electrochem Soc 160(5):A3095–A3099.  https://doi.org/10.1149/2.015305jes CrossRefGoogle Scholar
  14. 14.
    Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2(2):65–71.  https://doi.org/10.1107/S0021889869006558 CrossRefGoogle Scholar
  15. 15.
    Larson AC, Von Dreele RB (1994) General Structure Analysis System (GSAS); Los Alamos National Laboratory Report, LAUR 86-748. Los Alamos National Laboratory, Los Alamos, NM, USAGoogle Scholar
  16. 16.
    Toby BH (2001) EXPGUI, a graphical user interface for GSAS. J Appl Crystallogr 34(2):210–213.  https://doi.org/10.1107/S0021889801002242 CrossRefGoogle Scholar
  17. 17.
    Avdeev M, Ling CD, Tan TT, Li S, Oyama G, Yamada A, Barpanda P (2014) Magnetic structure and properties of the rechargeable battery insertion compound Na2FePO4F. Inorg Chem 53(2):682–684.  https://doi.org/10.1021/ic402513d CrossRefPubMedGoogle Scholar
  18. 18.
    Song W, Ji X, Wu Z, Zhu Y, Yao Y, Huangfu K, Chen Q, Banks CE (2014) Na2FePO4F cathode utilized in hybrid-ion batteries: a mechanistic exploration of ion migration and diffusion capability. J Mater Chem A 2(8):2571–2577.  https://doi.org/10.1039/c3ta14472k CrossRefGoogle Scholar
  19. 19.
    Kobayashi G, Nishimura S, Park M, Kanno R, Yashima M, Ida T, Yamada A (2009) Isolation of solid solution phases in size-controlled LixFePO4 at room temperature. Adv Funct Mater 19(3):395–403.  https://doi.org/10.1002/adfm.200801522 CrossRefGoogle Scholar
  20. 20.
    Momma K, Izumi F (2011) VESTA 3for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 44(6):1272–1276.  https://doi.org/10.1107/S0021889811038970 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Lalit Sharma
    • 1
    • 2
  • Ankush Bhatia
    • 2
  • Loïc Assaud
    • 2
  • Sylvain Franger
    • 2
  • Prabeer Barpanda
    • 1
  1. 1.Faraday Materials Laboratory, Materials Research CenterIndian Institute of ScienceBangaloreIndia
  2. 2.Institut de Chimie Moléculaire et des Matériaux d’Orsay, Equipe de Recherche et Innovation en Electrochimie pour l’EnergieUniversité Paris Sud/Université Paris-SaclayOrsayFrance

Personalised recommendations