, Volume 24, Issue 2, pp 327–341 | Cite as

Toward sustainable energy: photocatalysis of Cr-doped TiO2: 2. effect of defect disorder

  • Kazi Akikur Rahman
  • Tadeusz Bak
  • Armand Atanacio
  • Mihail Ionescu
  • Janusz NowotnyEmail author
Original Paper


The present chain of five papers considers the concept of solar-to-chemical energy conversion using TiO2-based semiconductors. The series reports the effect of chromium on the key performance-related properties of polycrystalline TiO2 (rutile), including electronic structure, photocatalytic activity, intrinsic defect disorder, electrochemical coupling and surface versus bulk properties. In this work, we show that the effect of chromium on photocatalytic performance of TiO2 depends on its elemental content and the related defect disorder that is determined by oxygen activity in the oxide lattice. At high oxygen activity, chromium leads to enhanced photocatalytic performance only for dilute solid solutions (up to 0.04–0.043 at.% Cr). Higher chromium content results in a decrease of photocatalytic activity below that for pure TiO2, despite the observed substantial decrease of the band gap. The photocatalytic performance of Cr-doped TiO2 annealed in reducing conditions is low within the entire studied range of compositions. The obtained results led to derivation of a theoretical model representing the mechanism of the light-induced reactivity of TiO2 with water and the related charge transfer. The photocatalytic performance is considered in terms of a competitive effect of several key performance-related properties. The performance is predominantly influenced by the concentration of titanium vacancies acting as reactive surface sites related to anodic charge transfer.

Graphical abstract


Cr-doped TiO2 Defect disorder Photocatalysis 


  1. 1.
    Bak T, Li W, Nowotny J, Atanacio AJ, Davis J (2015) Photocatalytic properties of TiO2: evidence of the key role of surface active sites in water oxidation. JPhys Chem A 119(36):9465–9473. CrossRefGoogle Scholar
  2. 2.
    Rahman KA, Bak T, Atanacio A, Ionescu M, Nowotny J (2017) Toward sustainable energy: photocatalysis of Cr-doped TiO2: 2. effect of defect disorder, Ionics, Part 1,
  3. 3.
    Li W, Bak T, Atanacio A, Nowotny J (2016) Photocatalytic properties of TiO2: effect of niobium and oxygen activity on partial water oxidation. Appl Catal B 198:243–253Google Scholar
  4. 4.
    Alim MA, Bak T, Atanacio AJ, Ionescu M, Kennedy B, Price WS, Plessis JD, Pourmahdavi M, Zhou M, Torres A, Nowotny J (2017) Photocatalytic properties of Ta-doped TiO2. Int J Ionics 23(12):3517–3531.
  5. 5.
    Bak T, Nowotny J, Sucher NJ, Wachsman E (2011) Effect of crystal imperfections on reactivity and photoreactivity of TiO2(Rutile) with oxygen, water, and bacteria. J Phys Chem C 115(32):15711–15738. CrossRefGoogle Scholar
  6. 6.
    Nowotny J, Bak T, Nowotny M, Sheppard L (2007) Titanium dioxide for solar-hydrogen II. Defect chemistry. Int J Hydrogen Energ 32:2630–2643Google Scholar
  7. 7.
    Bechstein R, Kitta M, Schütte J, Kühnle A, Onishi H (2009) Evidence for vacancy creation by chromium doping of rutile titanium dioxide (110). J Phys Chem C 113(8):3277–3280. CrossRefGoogle Scholar
  8. 8.
    Jaimy KB, Ghosh S, Sankar S, Warrier K (2011) An aqueous sol–gel synthesis of chromium(III) doped mesoporous titanium dioxide for visible light photocatalysis. Mater Res Bull 46(6):914–921. CrossRefGoogle Scholar
  9. 9.
    Gong J, Pu W, Yang C, Zhang J (2012) A simple electrochemical oxidation method to prepare highly ordered Cr-doped titania nanotube arrays with promoted photoelectrochemical property. Electrochim Acta 68(2012):178–183.
  10. 10.
    Li X, Guo Z, He T (2013) The doping mechanism of Cr into TiO2 and its influence on the photocatalytic performance. Phys Chem Chem Phys 15(46):20037–20045. CrossRefGoogle Scholar
  11. 11.
    López R, Gómez R, Oros-Ruiz S (2011) Photophysical and photocatalytic properties of TiO2-Cr sol–gel prepared semiconductors. Catal Today 166(1):159–165.
  12. 12.
    Tian B, Li C, Zhang J (2012) One-step preparation, characterization and visible-light photocatalytic activity of Cr-doped TiO2 with anatase and rutile bicrystalline phases. Chem Eng J 191:402–440. CrossRefGoogle Scholar
  13. 13.
    Mardare D, Iacomi F, Cornei N, Girtan M, Luca D (2010) Undoped and Cr-doped TiO2 thin films obtained by spray pyrolysis. Thin Solid Films 518(16):4586–4589. CrossRefGoogle Scholar
  14. 14.
    Diaz-Uribe C, Vallejo W, Ramos W (2014) Methylene blue photocatalytic mineralization under visible irradiation on TiO2 thin films doped with chromium. Appl Surf Sci 319:121–127. CrossRefGoogle Scholar
  15. 15.
    Zhu J, Deng Z, Chen F, Zhang J, Chen H, Anpo M, Huang J, Zhang L (2006) Hydrothermal doping method for preparation of Cr3+-TiO2 photocatalysts with concentration gradient distribution of Cr3+. Appl Catal B 62:329–335Google Scholar
  16. 16.
    Peng Y-H, Huang G-F, Huang W-Q (2012) Visible-light absorption and photocatalytic activity of Cr-doped TiO2 nanocrystal films. Adv Powder Technol 23:8–12Google Scholar
  17. 17.
    Choi J, Park H, Hoffmann MR (2010) Effects of single metal-ion doping on the visible-light photoreactivity of TiO2. J Phys Chem C 114(2):783–792. CrossRefGoogle Scholar
  18. 18.
    Wilke K, Breuer H (1999) The influence of transition metal doping on the physical and photocatalytic properties of titania. J Photoch Photobio A 121:49–53Google Scholar
  19. 19.
    Ghasemi S, Rahimnejad S, Setayesh SR, Rohani S, Gholami M (2009) Transition metal ions effect on the properties and photocatalytic activity of nanocrystalline TiO2 prepared in an ionic liquid. J Hazard Mater 172(2-3):1573–1578. CrossRefGoogle Scholar
  20. 20.
    Jimmy CY, Li G, Wang X, Hu X, Leung CW, Zhang Z (2006) An ordered cubic Im3m mesoporous Cr–TiO2 visible light photocatalyst. Chem Commun 2717–2719.
  21. 21.
    Koh PW, Hatta MHM, Ong ST, Yuliati L, Lee SL (2017) Photocatalytic degradation of photosensitizing and non-photosensitizing dyes over chromium doped titania photocatalysts under visible light. J Photochem Photobiol A 332:215–223Google Scholar
  22. 22.
    Kohler K, Schlapfer CW, Vonzelewsky A, Nickl J, Engweiler J, Baiker A (1993) Chromia supported on titania. J Catal 143(1):201–214. CrossRefGoogle Scholar
  23. 23.
    Michalow KA, Otal EH, Burnat D, Fortunato G, Emerich H, Ferri D, Heel A, Graule T (2013) Flame-made visible light active TiO2: Cr photocatalysts: correlation between structural, optical and photocatalytic properties. Catal Today 209:47–53.
  24. 24.
    Trenczek-Zajac A, Radecka M, Jasinski M, Michalow K, Rekas M, Kusior E, Zakrzewska K, Heel A, Graule T, Kowalski K (2009) Influence of Cr on structural and optical properties of TiO2:Cr nanopowders prepared by flame spray synthesis. J Power Sources 194(1):104–111. CrossRefGoogle Scholar
  25. 25.
    Hamadanian M, Reisi-Vanani A, Majedi A (2010) Synthesis, characterization and effect of calcination temperature on phase transformation and photocatalytic activity of Cu,S-codoped TiO2 nanoparticles. Appl Surf Sci 256(6):1837–1844. CrossRefGoogle Scholar
  26. 26.
    Vieira FTG, Melo DS, de Lima SJG, Longo E, Paskocimas CA, Júnior WS, de Souza AG, dos Santos IMG (2009) The influence of temperature on the color of TiO2:Cr pigments. Mater Res Bull 44(5):1086–1092. CrossRefGoogle Scholar
  27. 27.
    Li Y, Wlodarski W, Galatsis K, Moslih SH, Cole J, Russo S, Rockelmann N (2002) Gas sensing properties of p-type semiconducting Cr-doped TiO2 thin films. Sensor Actuat B-Chem 83:160–163Google Scholar
  28. 28.
    Escudero A, Langenhorst F (2012) Chromium incorporation into TiO2 at high pressure. J Solid State Chem 190:61–67Google Scholar
  29. 29.
    Belaya E, Viktorov V (2008) Formation of solid solutions in the TiO2-Cr2O3 system. Inorg Mater 44(1):62–66. CrossRefGoogle Scholar
  30. 30.
    Sōmiya S, Hirano S (1978) Kamiya S (1978) Phase relations of the Cr2O3-TiO2 system. J Solid State Chem 25(3):273–284.
  31. 31.
    Zakrzewska K, Radecka M, Rekas M (1997) Effect of Nb, Cr, Sn additions on gas sensing properties of TiO2 thin films. Thin Solid Films 310(1-2):161–166. CrossRefGoogle Scholar
  32. 32.
    Venezia AM, Palmisano L, Schiavello M (1995) Structural changes of titanium oxide induced by chromium addition as determined by an X-ray diffraction study. J Solid State Chem 114:364–368Google Scholar
  33. 33.
    Sikora I, Stolze F, Hirschwald W (1987) Segregation of chromium in CoO- Cr2O3 solid solutions and CoCr2O4 spinel phases studied by SIMS and ESCA. Surf Interface Anal 10:424–429Google Scholar
  34. 34.
    Zhang J, Zhou P, Liu J, Yu J (2014) New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2. Phys Chem Chem Phys 16(38):20382–20386. CrossRefGoogle Scholar
  35. 35.
    Xu M, Gao Y, Moreno EM, Kunst M, Muhler M, Wang Y, Idriss H, Wöll C (2011) Photocatalytic activity of bulk TiO2 anatase and rutile single crystals using infrared absorption spectroscopy. Phys Rev Lett 106(13):138302. CrossRefGoogle Scholar
  36. 36.
    Umebayashi T, Yamaki T, Itoh H, Asai K (2002) Analysis of electronic structures of 3d transition metal-doped TiO 2 based on band calculations. J Phys Chem Solids 63(10):1909–1920. CrossRefGoogle Scholar
  37. 37.
    Shi J, Leng W, Zhu W, Zhang J, Cao C (2006) Electrochemically assisted photocatalytic oxidation of nitrite over Cr-doped TiO2 under visible light. Chem Eng Tech 29(1):146–154. CrossRefGoogle Scholar
  38. 38.
    Nowotny J, Macyk W, Wachsman E, Rahman KA (2016) Effect of oxygen activity on the n–p transition for pure and Cr-doped TiO2. J Phys Chem C 120(6):3221–3228. CrossRefGoogle Scholar
  39. 39.
    Kröger F, Vink H (1956) Relations between the concentrations of imperfections in crystalline solids. Solid State Phys 3:307–435. CrossRefGoogle Scholar
  40. 40.
    Stoneham AM (1980) Theory of defect processes. Phys Today 33:34–37Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Kazi Akikur Rahman
    • 1
  • Tadeusz Bak
    • 1
  • Armand Atanacio
    • 2
  • Mihail Ionescu
    • 2
  • Janusz Nowotny
    • 1
    Email author
  1. 1.Solar Energy TechnologiesWestern Sydney UniversityPenrithAustralia
  2. 2.Australian Nuclear Science and Technology OrganisationKirraweeAustralia

Personalised recommendations