Advertisement

Ionics

, Volume 24, Issue 2, pp 309–325 | Cite as

Toward sustainable energy: photocatalysis of Cr-doped TiO2: 1. electronic structure

  • Kazi Akikur Rahman
  • Tadeusz Bak
  • Armand Atanacio
  • Mihail Ionescu
  • Janusz NowotnyEmail author
Original Paper

Abstract

The present chain of five papers considers the concept of defect engineering in processing TiO2-based photosensitive semiconductors for solar-to-chemical energy conversion. The papers report the effect of chromium on the key performance-related properties of polycrystalline TiO2 (rutile), including (i) electronic structure, (ii) chromium-related photocatalytic properties, (iii) oxygen-related photocatalytic properties, (iv) electrochemical coupling and (v) surface versus bulk properties. The present work reports the effect of chromium on defect disorder and the related electronic structure of TiO2, including the band gap and mid-gap energy levels. It is shown that chromium incorporation into the TiO2 lattice results in a decrease of the band gap from 3.04 eV for pure TiO2 to 1.4 and 1.3 eV, for Cr-doped TiO2 (1.365 at% Cr) after annealing at 1373 K in the gas phase of controlled oxygen activity, 21 kPa and 10−10 Pa, respectively. The optical properties determined using the ultraviolet-vis spectroscopy (in the reflectance mode) indicate that chromium incorporation results in the formation of mid-band energy levels. In this work, we show that chromium at and above the concentrations levels of 0.04 and 0.376 at% results in the formation of acceptor-type energy levels at 0.57 and 1.16 eV (above the valence band), respectively, which are related to tri-valent chromium in titanium sites and titanium vacancies, respectively. Application of well-defined protocol leads to the determination of data that are well reproducible. The new insight involves the determination of the band gap of TiO2 processed in the gas phase of controlled oxygen activity.

Graphical abstract

Keywords

Titanium dioxide Cr-doped TiO2 Defect disorder Optical properties 

References

  1. 1.
    Sopori BL, Deng X, Benner JP, Rohatgi A, Sana P, Estreicher SK, Park YK, Roberson MA (1996) Hydrogen in silicon: a discussion of diffusion and passivation mechanisms. Sol Energy Mater Sol Cells 41:159–169Google Scholar
  2. 2.
    Bak T, Nowotny J, Sucher NJ, Wachsman E (2011) Effect of crystal imperfections on reactivity and photoreactivity of TiO2(Rutile) with oxygen, water, and bacteria. J Phys Chem C 115(32):15711–15738.  https://doi.org/10.1021/jp2027862 CrossRefGoogle Scholar
  3. 3.
    Zainullina V, Zhukov V, Korotin M (2015) Influence of oxygen nonstoichiometry and doping with 2p-, 3p-, 6p- and 3d-elements on electronic structure, optical properties and photocatalytic activity of rutile and anatase: Ab initio approaches. J Photochem Photobiol C 22:58–83.  https://doi.org/10.1016/j.jphotochemrev.2014.10.005 CrossRefGoogle Scholar
  4. 4.
    Lee JS, You KH, Park CB (2012) Highly photoactive, low bandgap TiO2 nanoparticles wrapped by graphene. Adv Mater 24(8):1084–1088.  https://doi.org/10.1002/adma.201104110 CrossRefGoogle Scholar
  5. 5.
    Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293(5528):269–271.  https://doi.org/10.1126/science.1061051 CrossRefGoogle Scholar
  6. 6.
    Chen D, Jiang Z, Geng J, Wang Q, Yang D (2007) Carbon and nitrogen Co-doped TiO2 with enhanced visible-light photocatalytic activity. Ind Eng Chem Res 46(9):2741–2746.  https://doi.org/10.1021/ie061491k CrossRefGoogle Scholar
  7. 7.
    Hao W, James PL (2005) Effects of dopant states on photoactivity in carbon-doped TiO2. J Phys Condens Matter 17(21):L209Google Scholar
  8. 8.
    Nagaveni K, Hegde M, Ravishankar N, Subbanna G, Madras G (2004) Synthesis and structure of nanocrystalline TiO2 with lower band gap showing high photocatalytic activity. Langmuir 20(7):2900–2907.  https://doi.org/10.1021/la035777v CrossRefGoogle Scholar
  9. 9.
    Zhu W, Qiu X, Iancu V, Chen X-Q, Pan H, Wang W, Dimitrijevic NM, Rajh T, Meyer HM III, Paranthaman MP (2009) Band gap narrowing of titanium oxide semiconductors by noncompensated anion-cation codoping for enhanced visible-light photoactivity. Phys Rev Lett 103(22):226401.  https://doi.org/10.1103/PhysRevLett.103.226401 CrossRefGoogle Scholar
  10. 10.
    Waterhouse GIN, Wahab AK, Al-Oufi M, Jovic V, Anjum DH, Sun-Waterhouse D, Llorca J, Idriss H (2013) Hydrogen production by tuning the photonic band gap with the electronic band gap of TiO2. Sci Rep 3(1):2849.  https://doi.org/10.1038/srep02849 CrossRefGoogle Scholar
  11. 11.
    Sun W-T, Yu Y, Pan H-Y, Gao X-F, Chen Q, Peng L-M (2008) CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes. J Am Chem Soc 130(4):1124–1125.  https://doi.org/10.1021/ja0777741 CrossRefGoogle Scholar
  12. 12.
    Irie H, Watanabe Y, Hashimoto K (2003) Nitrogen-concentration dependence on photocatalytic activity of TiO2-xNx powders. J Phys Chem B 107(23):5483–5486.  https://doi.org/10.1021/jp030133h CrossRefGoogle Scholar
  13. 13.
    Cong Y, Zhang J, Chen F, Anpo M, He D (2007) Preparation, photocatalytic activity, and mechanism of nano-TiO2Co-doped with nitrogen and iron (III). J Phys Chem C 111(28):10618–10623.  https://doi.org/10.1021/jp0727493 CrossRefGoogle Scholar
  14. 14.
    Rahman KA, Bak T, Atanacio A, Ionescu M, Nowotny J (2017) Towards Sustainable Energy. Photocatalysis of Cr-Doped TiO2: 2. Effect of defect disorder, Ionics, Part 2,  https://doi.org/10.1007/s11581-017-2370-9
  15. 15.
    Rahman KA, Bak T, Atanacio A, Ionescu M, Nowotny J (2017) Towards Sustainable Energy. Photocatalysis of Cr-Doped TiO2: 3. Effect of oxygen activity, Ionics, Part 3,  https://doi.org/10.1007/s11581-017-2304-6
  16. 16.
    Rahman KA, Bak T, Atanacio A, Ionescu M, Nowotny J (2017) Towards Sustainable Energy. Photocatalysis of Cr-Doped TiO2: 4. Electrochemical couples, Ionics, Part 4,  https://doi.org/10.1007/s11581-017-2305-5
  17. 17.
    Rahman KA, Bak T, Atanacio A, Ionescu M, Liu R, Nowotny J (2017) Towards sustainable energy: photocatalysis of Cr-doped TiO2. 5. Effect of segregation on surface versus bulk composition Ionics, Part 5,  https://doi.org/10.1007/s11581-017-2326-0
  18. 18.
    Wilke K, Breuer H (1999) The influence of transition metal doping on the physical and photocatalytic properties of titania. J Photoch Photobio A 121(1):49–53.  https://doi.org/10.1016/S1010-6030(98)00452-3 CrossRefGoogle Scholar
  19. 19.
    Kim R, Cho S, Park WG, Cho DY, Oh SJ, Martin RS, Berthet P, Park JG, Yu J (2014) Charge and magnetic states of rutile TiO2 doped with Cr ions. Journal of Physics: Condens Matter 26:146003Google Scholar
  20. 20.
    Radecka M, Zakrzewska K, Wierzbicka M, Gorzkowska A, Komornicki S (2003) Study of the TiO2–Cr2O3 system for photoelectrolytic decomposition of water. Solid State Ionics 157(1-4):379–386.  https://doi.org/10.1016/S0167-2738(02)00236-9 CrossRefGoogle Scholar
  21. 21.
    Hajjaji A, Atyaoui A, Trabelsi K, Amlouk M, Bousselmi L, Bessais B, Khakani MAE, Gaidi M (2014) Cr-Doped TiO2 Thin Films Prepared by Means of a Magnetron Co-Sputtering Process: Photocatalytic Application. Am J Anal Chem 5:473–482Google Scholar
  22. 22.
    Dholam R, Patel N, Santini A, Miotello A (2010) Efficient indium tin oxide/Cr-doped-TiO2 multilayer thin films for H2 production by photocatalytic water-splitting. Int J Hydrog Energy 35(18):9581–9590.  https://doi.org/10.1016/j.ijhydene.2010.06.097 CrossRefGoogle Scholar
  23. 23.
    Mardare D, Rusu G, Iacomi F, Girtan M, Vida-Simiti I (2005) Chromium-doped titanium oxide thin films. Mater Sci Eng B 118(1-3):187–191.  https://doi.org/10.1016/j.mseb.2004.12.083 CrossRefGoogle Scholar
  24. 24.
    Diaz-Uribe C, Vallejo W, Ramos W (2014) Methylene blue photocatalytic mineralization under visible irradiation on TiO2 thin films doped with chromium. Appl Surf Sci 319:121–127.  https://doi.org/10.1016/j.apsusc.2014.06.157 CrossRefGoogle Scholar
  25. 25.
    Choudhury B, Choudhury A (2012) Dopant induced changes in structural and optical properties of Cr3+ doped TiO2 nanoparticles. Mater Chem Phys 132(2-3):1112–1118.  https://doi.org/10.1016/j.matchemphys.2011.12.083 CrossRefGoogle Scholar
  26. 26.
    López R, Gómez R, Oros-Ruiz S (2011) Photophysical and photocatalytic properties of TiO2-Cr sol–gel prepared semiconductors. Catal Today 166(1):159–165.  https://doi.org/10.1016/j.cattod.2011.01.010 CrossRefGoogle Scholar
  27. 27.
    Michalow KA, Otal EH, Burnat D, Fortunato G, Emerich H, Ferri D, Heel A, Graule T (2013) Flame-made visible light active TiO2:Cr photocatalysts: Correlation between structural, optical and photocatalytic properties. Catal Today 209:47–53.  https://doi.org/10.1016/j.cattod.2012.10.007 CrossRefGoogle Scholar
  28. 28.
    Jaimy KB, Ghosh S, Sankar S, Warrier K (2011) An aqueous sol–gel synthesis of chromium(III) doped mesoporous titanium dioxide for visible light photocatalysis. Mater Res Bull 46(6):914–921.  https://doi.org/10.1016/j.materresbull.2011.02.030 CrossRefGoogle Scholar
  29. 29.
    Zhang S, Chen Y, Yu Y, Wu H, Wang S, Zhu B, Huang W, Wu S (2008) Synthesis, characterization of Cr-doped TiO2 nanotubes with high photocatalytic activity. J Nanopart Res 10(5):871–875.  https://doi.org/10.1007/s11051-007-9309-4 CrossRefGoogle Scholar
  30. 30.
    Gong J, Pu W, Yang C, Zhang J (2012) A simple electrochemical oxidation method to prepare highly ordered Cr-doped titania nanotube arrays with promoted photoelectrochemical property. Electrochim Acta 68(2012):178–183.  https://doi.org/10.1016/j.electacta.2012.02.049 CrossRefGoogle Scholar
  31. 31.
    Momeni MM, Ghayeb Y (2015) Photoelectrochemical water splitting on chromium-doped titanium dioxide nanotube photoanodes prepared by single-step anodizing. J Alloy Compd 637(2015):393–400.  https://doi.org/10.1016/j.jallcom.2015.02.137 CrossRefGoogle Scholar
  32. 32.
    Dholam R, Patel N, Adami M, Miotello A (2009) Hydrogen production by photocatalytic water-splitting using Cr- or Fe-doped TiO2 composite thin films photocatalyst. Int. J. Hydrogen Energ. 34(2009):5337–5346.  https://doi.org/10.1016/j.ijhydene.2009.05.011 CrossRefGoogle Scholar
  33. 33.
    Li X, Guo Z, He T (2013) The doping mechanism of Cr into TiO2 and its influence on the photocatalytic performance. Phys Chem Chem Phys 15(46):20037–20045.  https://doi.org/10.1039/c3cp53531b CrossRefGoogle Scholar
  34. 34.
    Zhu J, Deng Z, Chen F, Zhang J, Chen H, Anpo M, Huang J, Zhang L (2006) Hydrothermal doping method for preparation of Cr3+-TiO2 photocatalysts with concentration gradient distribution of Cr3+. Appl Catal B 62(3-4):329–335.  https://doi.org/10.1016/j.apcatb.2005.08.013 CrossRefGoogle Scholar
  35. 35.
    Jayamaha U, Atanacio A, Bak T, Nowotny J, Liu R (2015) Effect of oxygen activity on chromium segregation in Cr-doped TiO2 single crystal. Ionics 21(3):785–790.  https://doi.org/10.1007/s11581-014-1226-9 CrossRefGoogle Scholar
  36. 36.
    Bak T, Li W, Nowotny J, Atanacio AJ, Davis J (2015) Photocatalytic properties of TiO2: evidence of the key role of surface active sites in water oxidation. J Phys Chem A 119(36):9465–9473.  https://doi.org/10.1021/acs.jpca.5b05031 CrossRefGoogle Scholar
  37. 37.
    Li W, Bak T, Atanacio A, Nowotny J (2016) Photocatalytic properties of TiO 2 : effect of niobium and oxygen activity on partial water oxidation. Appl Catal B 198:243–253.  https://doi.org/10.1016/j.apcatb.2016.05.044 CrossRefGoogle Scholar
  38. 38.
    Nowotny J, Bak T, Nowotny M, Sheppard L (2007) Titanium dioxide for solar-hydrogen II. Defect chemistry☆. Int J Hydrog Energy 32(14):2630–2643.  https://doi.org/10.1016/j.ijhydene.2006.09.005 CrossRefGoogle Scholar
  39. 39.
    Kröger F, Vink H (1956) Relations between the concentrations of imperfections in crystalline solids. Solid State Phys 3:307–435.  https://doi.org/10.1016/S0081-1947(08)60135-6 CrossRefGoogle Scholar
  40. 40.
    Nowotny M, Bak T, Nowotny J, Sorrell C (2005) Titanium vacancies in nonstoichiometric TiO2 single crystal. Phys Status Solidi B 242(11):R88–R90.  https://doi.org/10.1002/pssb.200541186 CrossRefGoogle Scholar
  41. 41.
    He J, Behera R, Finnis M, Li X, Dickey E, Phillpot S, Sinnott S (2007) Prediction of high-temperature point defect formation in TiO2 from combined ab initio and thermodynamic calculations. Acta Mater 55(13):4325–4337.  https://doi.org/10.1016/j.actamat.2007.04.005 CrossRefGoogle Scholar
  42. 42.
    Bjørheim TS, Kuwabara A, Norby T (2013) Defect Chemistry of Rutile TiO2from First Principles Calculations. J Phy Chem C 117(11):5919–5930.  https://doi.org/10.1021/jp304146e CrossRefGoogle Scholar
  43. 43.
    Grey IE, Wilson NC (2007) Titanium vacancy defects in sol–gel prepared anatase. J Solid State Chem 180(2):670–678.  https://doi.org/10.1016/j.jssc.2006.11.028 CrossRefGoogle Scholar
  44. 44.
    Wang S, Pan L, Song J-J, Mi W, Zou J-J, Wang L, Zhang X (2015) Titanium-defected undoped anatase TiO2 with p-type conductivity, room-temperature ferromagnetism, and remarkable photocatalytic performance. J Am Chem Soc 137(8):2975–2983.  https://doi.org/10.1021/ja512047k CrossRefGoogle Scholar
  45. 45.
    Peng H, Li J, Li S-S, Xia J-B (2009) Possible origin of ferromagnetism in undoped anatase TiO2. Phys Rev B 79(9):092411.  https://doi.org/10.1103/PhysRevB.79.092411 CrossRefGoogle Scholar
  46. 46.
    Bechstein R, Kitta M, Schütte J, Kühnle A, Onishi H (2009) Evidence for vacancy creation by chromium doping of rutile titanium dioxide (110). J Phys Chem C 113(8):3277–3280.  https://doi.org/10.1021/jp8095677 CrossRefGoogle Scholar
  47. 47.
    Carpentier J-L, Lebrun A, Perdu F (1989) Point defects and charge transport in pure and chromium-doped rutile at 1273 K. J Phys Chem Solids 50(2):145–151.  https://doi.org/10.1016/0022-3697(89)90411-3 CrossRefGoogle Scholar
  48. 48.
    Ghosh AK, Wakim F, Addiss R Jr (1969) Photoelectronic processes in rutile. Phys Rev 184(3):979–988.  https://doi.org/10.1103/PhysRev.184.979 CrossRefGoogle Scholar
  49. 49.
    Xu M, Gao Y, Moreno EM, Kunst M, Muhler M, Wang Y, Idriss H, Wöll C (2011) Photocatalytic activity of bulk TiO2 anatase and rutile single crystals using infrared absorption spectroscopy. Phys Rev Lett 106(13):138302.  https://doi.org/10.1103/PhysRevLett.106.138302 CrossRefGoogle Scholar
  50. 50.
    da Silva RC, Alves E, Cruz MM (2002) Conductivity behaviour of Cr implanted TiO2. Nucl Instrum Methods Phys Res Sect B 191(1-4):158–162.  https://doi.org/10.1016/S0168-583X(02)00541-4 CrossRefGoogle Scholar
  51. 51.
    Miyagi T, Kamei M, Mitsuhashi T, Yamazaki A (2003) Superior Schottky electrode of RuO2 for deep level transient spectroscopy on anatase TiO2. Appl Phys Lett 83(9):1782–1784.  https://doi.org/10.1063/1.1606869 CrossRefGoogle Scholar
  52. 52.
    Nowotny M, Sheppard L, Bak T, Nowotny J (2008) Defect chemistry of titanium dioxide. Application of defect engineering in processing of TiO2-based photocatalysts†. J Phys Chem C 112(14):5275–5300.  https://doi.org/10.1021/jp077275m CrossRefGoogle Scholar
  53. 53.
    Cronemeyer D (1959) Infrared Absorption of Reduced Rutile TiO2Single Crystals. Phys Rev 113(5):1222–1226.  https://doi.org/10.1103/PhysRev.113.1222 CrossRefGoogle Scholar
  54. 54.
    Zhang J, Zhou P, Liu J, Yu J (2014) New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2. Phys Chem Chem Phys 16(38):20382–20386.  https://doi.org/10.1039/C4CP02201G CrossRefGoogle Scholar
  55. 55.
    Fox H, Newman KE, Schneider WF, Corcelli SA (2010) Bulk and surface properties of rutile TiO2 from self-consistent-charge density functional tight binding. J Chem Theory Comput 6(2):499–507.  https://doi.org/10.1021/ct900665a CrossRefGoogle Scholar
  56. 56.
    Persson C, Ferreira da Silva A (2005) Strong polaronic effects on rutile TiO2 electronic band edges. Appl Phys Lett 86(23):231912–231912.  https://doi.org/10.1063/1.1940739 CrossRefGoogle Scholar
  57. 57.
    Yang T-S, Shiu C-B, Wong M-S (2004) Structure and hydrophilicity of titanium oxide films prepared by electron beam evaporation. Surf Sci 548(1-3):75–82.  https://doi.org/10.1016/j.susc.2003.10.044 CrossRefGoogle Scholar
  58. 58.
    Marzec A, Radecka M, Maziarz W, Kusior A, Pędzich Z (2016) Structural, optical and electrical properties of nanocrystalline TiO 2 , SnO 2 and their composites obtained by the sol–gel method. J Eur Ceram Soc 36(12):2981–2989.  https://doi.org/10.1016/j.jeurceramsoc.2015.12.046 CrossRefGoogle Scholar
  59. 59.
    Tang H, Prasad K, Sanjines R, Schmid P, Levy F (1994) Electrical and optical properties of TiO2anatase thin films. J Appl Phys 75(4):2042–2047.  https://doi.org/10.1063/1.356306 CrossRefGoogle Scholar
  60. 60.
    Ekuma CE, Bagayoko D (2011) Ab-initio electronic and structural properties of rutile titanium dioxide. Jpn J Appl Phys 50(10R):101103.  https://doi.org/10.7567/JJAP.50.101103 CrossRefGoogle Scholar
  61. 61.
    Fan J, Zhao Z, Wang J, Zhu L (2015) Synthesis of Cr,N-codoped titania nanotubes and their visible-light-driven photocatalytic properties. Appl Surf Sci 324(2015):691–697.  https://doi.org/10.1016/j.apsusc.2014.11.018 CrossRefGoogle Scholar
  62. 62.
    Kerkez-Kuyumcu Ö, Kibar E, Dayıoğlu K, Gedik F, Akın AN, Özkara-Aydınoğlu Ş (2015) A comparative study for removal of different dyes over M/TiO 2 (M = Cu, Ni, Co, Fe, Mn and Cr) photocatalysts under visible light irradiation. J Photochem Photobiol A 311:176–185.  https://doi.org/10.1016/j.jphotochem.2015.05.037 CrossRefGoogle Scholar
  63. 63.
    Ho W-Y, Chan M-H, Yao K-S, Chang C-L, Wang D-Y, Hsu C-H (2008) Characteristics of chromium-doped titanium oxide coatings synthesized by cathodic arc deposition. Thin Solid Films 516(2008):8530–8536.  https://doi.org/10.1016/j.tsf.2008.05.014 CrossRefGoogle Scholar
  64. 64.
    Li Y, Wlodarski W, Galatsis K, Moslih SH, Cole J, Russo S, Rockelmann N (2002) Gas sensing properties of p-type semiconducting Cr-doped TiO2 thin films. Sensor Actuat B Chem 83(1-3):160–163.  https://doi.org/10.1016/S0925-4005(01)01031-0 CrossRefGoogle Scholar
  65. 65.
    Sōmiya S, Hirano S, Kamiya S (1978) Phase relations of the Cr2O3–TiO2 system. J Solid State Chem 25(1978):273–284.  https://doi.org/10.1016/0022-4596(78)90112-3 CrossRefGoogle Scholar
  66. 66.
    Colmenares JC, Magdziarz A, Kurzydlowski K, Grzonka J, Chernyayeva O, Lisovytskiy D (2013) Low-temperature ultrasound-promoted synthesis of Cr–TiO2-supported photocatalysts for valorization of glucose and phenol degradation from liquid phase. Appl. Catal. B Environ. 134:136–144Google Scholar
  67. 67.
    Mardare D, Iacomi F, Cornei N, Girtan M, Luca D (2010) Undoped and Cr-doped TiO2 thin films obtained by spray pyrolysis. Thin Solid Films 518(16):4586–4589.  https://doi.org/10.1016/j.tsf.2009.12.037 CrossRefGoogle Scholar
  68. 68.
    Zhu H, Tao J, Dong X (2010) Preparation and photoelectrochemical activity of Cr-doped TiO2 nanorods with nanocavities. J Phys Chem C 114(7):2873–2879.  https://doi.org/10.1021/jp9085987 CrossRefGoogle Scholar
  69. 69.
    Yin JB, Zhao XP (2004) Preparation and enhanced electrorheological activity of TiO2 doped with chromium ion. Chem Mater 16(2):321–328.  https://doi.org/10.1021/cm034787e CrossRefGoogle Scholar
  70. 70.
    Kohler K, Schlapfer CW, Vonzelewsky A, Nickl J, Engweiler J, Baiker A (1993) Chromia Supported on Titania. J Catal 143(1):201–214.  https://doi.org/10.1006/jcat.1993.1266 CrossRefGoogle Scholar
  71. 71.
    Radecka M, Rekas M (1994) Defect structure and electrical properties of Cr-and Nb-doped TiO2 thin films. Solid State Phenom. Trans Tech Publ 39:135–138 Google Scholar
  72. 72.
    Tani E, Baumard JF (1980) Electrical properties and defect structure of rutile slightly doped with Cr and Ta. J Solid State Chem 32(1):105–113.  https://doi.org/10.1016/0022-4596(80)90273-X CrossRefGoogle Scholar
  73. 73.
    Açıkgöz M (2012) A study of the impurity structure for 3d3 (Cr3+ and Mn4+) ions doped into rutile TiO2 crystal. Spectrochim Acta A 86:417–422.  https://doi.org/10.1016/j.saa.2011.10.061 CrossRefGoogle Scholar
  74. 74.
    Yang K, Dai Y, Huang B (2009) Density functional characterization of the electronic structure and visible-light absorption of Cr-doped anatase TiO2. Chem Phys Chem 10(13):2327–2333.  https://doi.org/10.1002/cphc.200900188 CrossRefGoogle Scholar
  75. 75.
    Sasaki J, Peterson N, Hoshino K (1985) Tracer impurity diffusion in single-crystal rutile (TiO2−x). J Phys Chem Solids 46(11):1267–1283.  https://doi.org/10.1016/0022-3697(85)90129-5 CrossRefGoogle Scholar
  76. 76.
    Tian B, Li C, Zhang J (2012) One-step preparation, characterization and visible-light photocatalytic activity of Cr-doped TiO2 with anatase and rutile bicrystalline phases. Chem Eng J 191:402–409.  https://doi.org/10.1016/j.cej.2012.03.038 CrossRefGoogle Scholar
  77. 77.
    Trenczek-Zajac A, Radecka M, Jasinski M, Michalow K, Rekas M, Kusior E, Zakrzewska K, Heel A, Graule T, Kowalski K (2009) Influence of Cr on structural and optical properties of TiO2:Cr nanopowders prepared by flame spray synthesis. J Power Sources 194(1):104–111.  https://doi.org/10.1016/j.jpowsour.2009.02.068 CrossRefGoogle Scholar
  78. 78.
    Erdal S, Kongshaug C, Bjørheim TS, Jalarvo N, Haugsrud R, Norby T (2010) Hydration of Rutile TiO2: thermodynamics and Effects onn- andp-Type Electronic Conduction. J Phys Chem C 114(2010):9139–9145.  https://doi.org/10.1021/jp101886a CrossRefGoogle Scholar
  79. 79.
    Atanacio AJ, Nowotny J, Prince KE (2012) Effect of oxygen activity on surface composition of in-doped TiO2 at elevated temperatures. J Phys Chem C 116(36):19246–19251.  https://doi.org/10.1021/jp302724j CrossRefGoogle Scholar
  80. 80.
    Long M, Cai W, Chen H, Xu J (2007) Preparation, characterization and photocatalytic activity of visible light driven chlorine-doped TiO2. Frontiers Chem China 2(3):278–282.  https://doi.org/10.1007/s11458-007-0050-4 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Kazi Akikur Rahman
    • 1
  • Tadeusz Bak
    • 1
  • Armand Atanacio
    • 2
  • Mihail Ionescu
    • 2
  • Janusz Nowotny
    • 1
    Email author
  1. 1.Solar Energy TechnologiesWestern Sydney UniversityPenrithAustralia
  2. 2.Australian Nuclear Science and Technology OrganisationKirraweeAustralia

Personalised recommendations