Advertisement

Ionics

, Volume 24, Issue 8, pp 2465–2472 | Cite as

Sensitive and selective electrochemical sensor of diuron against indole-3-acetic acid based on core-shell structured SiO2@Au particles

Original Paper
  • 72 Downloads

Abstract

In the current study, a simple, recoverable, and stable sensor was developed based on SiO2 spheres functionalized with 6-nm Au nanoparticles (SiO2@AuNPs). Fabrication procedures and analytical application of this sensor toward quantitative determination of diuron in the presence of interfering compound indole-3-acetic acid were verified by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and differential pulse voltammetry (DPV) methods. It has been observed that diuron oxidation at the surface of sensor occurred at a potential of about 1.09 V which was 210 mV higher than that of indole-3-acetic acid, confirming that this newly prepared sensor appeared to be a good platform for the selective detection of diuron. Moreover, DPV demonstrated a linear relationship from 0.20 to 55 μmol/L and a detection limit of 51.9 nmol/L for diuron. Finally, this sensor was utilized for the determination of diuron in complex vegetable samples.

Keywords

SiO2 spheres Ag nanoparticles Diuron Indole-3-acetic acid Electrochemical sensor 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant number 61201091), the Program for Science & Technology Innovation Talents in University of Henan Province (grant number 16HASTIT004), the Key Scientific and Technological Project of Henan Province (grant number 162102210126), the Key Scientific Research Projects in University of Henan Province (grant number 18A150047), the Open Fund Research Project of Culinary Science Key Laboratory of Sichuan Province (grant number PRKX2017Z01), and the Nanhu Scholars Program for Young Scholars of XYNU.

References

  1. 1.
    Sapozhnikova Y, Wirth E, Schiff K, Brown J, Fulton M (2007) Antifouling pesticides in the coastal waters of Southern California. Mar Pollut Bull 54(12):1972–1978.  https://doi.org/10.1016/j.marpolbul.2007.09.026 CrossRefGoogle Scholar
  2. 2.
    Katsumata H, Sada M, Nakaoka Y, Kaneco S, Suzuki T, Ohta K (2009) Photocatalytic degradation of diuron in aqueous solution by platinized TiO2. J Hazard Mater 171(1-3):1081–1087.  https://doi.org/10.1016/j.jhazmat.2009.06.110 CrossRefGoogle Scholar
  3. 3.
    Bonnet JL, Bonnemoy F, Dusser M, Bohatier J (2007) Assessment of the potential toxicity of herbicides and their degradation products to nontarget cells using two microorganisms, the bacteria vibrio fischeri and the ciliate tetrahymena pyriformis. Environ Toxicol 22(1):78–91.  https://doi.org/10.1002/tox.20237 CrossRefGoogle Scholar
  4. 4.
    Feng J, Zheng Z, Luan J, Li K, Wang L, Feng J (2009) Gas–liquid hybrid discharge-induced degradation of diuron in aqueous solution. J Hazard Mater 164(2-3):838–846.  https://doi.org/10.1016/j.jhazmat.2008.08.085 CrossRefGoogle Scholar
  5. 5.
    Rodríguez R, Picó Y, Font G, Mañes J (2001) Determination of urea-derived pesticides in fruits and vegetables by solid-phase preconcentration and capillary electrophoresis. Electrophoresis 22(10):2010–2016.  https://doi.org/10.1002/1522-2683(200106)22:10<2010::AID-ELPS2010>3.0.CO;2-H CrossRefGoogle Scholar
  6. 6.
    Hu YF (2015) Simultaneous determination of phenylurea herbicides in yam by capillary electrophoresis with electrochemiluminescence detection. J Chromatogr B 986:143–148CrossRefGoogle Scholar
  7. 7.
    Scheel GL, Tarley CRT (2000) Feasibility of supramolecular solvent-based microextraction for simultaneous preconcentration of herbicides from natural waters with posterior determination by HPLC–DAD. Microchem J 133:650–657CrossRefGoogle Scholar
  8. 8.
    Batista-Andrade JA, Caldas SS, JLD A, Castro IB, Fillmann G, Primel EG (2016) Antifouling booster biocides in coastal waters of Panama: first appraisal in one of the busiest shipping zones. Mar Pollut Bull 112(1-2):415–419.  https://doi.org/10.1016/j.marpolbul.2016.07.045 CrossRefGoogle Scholar
  9. 9.
    Andres-Costa MJ, Andreu V, Pico Y (2016) Analysis of psychoactive substances in water by information dependent acquisition on a hybrid quadrupole time-of-flight mass spectrometer. J Chromatogr A 1461:98–106.  https://doi.org/10.1016/j.chroma.2016.07.062 CrossRefGoogle Scholar
  10. 10.
    Terzopoulou E, Voutsa D, Kaklamanos G (2015) A multi-residue method for determination of 70 organic micropollutants in surface waters by solid-phase extraction followed by gas chromatography coupled to tandem mass spectrometry. Environ Sci Pollut R 22(2):1095–1112.  https://doi.org/10.1007/s11356-014-3397-3 CrossRefGoogle Scholar
  11. 11.
    Hengel M, Lee P (2014) Community air monitoring for pesticides-part 2: multiresidue determination of pesticides in air by gas chromatography, gas chromatography-mass spectrometry, and liquid chromatography-mass spectrometry. Environ Monit Assess 186(3):1343–1353.  https://doi.org/10.1007/s10661-013-3395-9 CrossRefGoogle Scholar
  12. 12.
    Mugadza T, Nyokong T (2010) Facile electrocatalytic oxidation of diuron on polymerized nickel hydroxo tetraamino-phthalocyanine modified glassy carbon electrodes. Talanta 81(4-5):1373–1379.  https://doi.org/10.1016/j.talanta.2010.02.037 CrossRefGoogle Scholar
  13. 13.
    Wong A, Sotomayor MDPT (2014) Determination of carbofuran and diuron in FIA system using electrochemical sensor modified with organometallic complexes and graphene oxide. J Electroanal Chem 731:163–171.  https://doi.org/10.1016/j.jelechem.2014.08.025 CrossRefGoogle Scholar
  14. 14.
    Sharma P, Tuteja SK, Bhalla V, Shekhawat G, Dravid VP, Suri CR (2013) Bio-functionalized graphene-graphene oxide nanocomposite based electrochemical immunosensing. Biosens Bioelectron 39(1):99–105.  https://doi.org/10.1016/j.bios.2012.06.061 CrossRefGoogle Scholar
  15. 15.
    Hajisafari M, Nasirizadeh N (2017) An electrochemical nanosensor for simultaneous determination of hydroxylamine and nitrite using oxadiazole self-assembled on silver nanoparticle-modified glassy carbon electrode. Ionics 23(6):1541–1551.  https://doi.org/10.1007/s11581-016-1962-0 CrossRefGoogle Scholar
  16. 16.
    Othman SH, Ritter U, McCarthy EK, Fernandes D, Kelarakis A, Tsierkezos NG (2017) Synthesis and electrochemical characterization of nitrogen-doped and nitrogen-phosphorus-doped multi-walled carbon nanotubes. Ionics 23(8):2025–2035.  https://doi.org/10.1007/s11581-017-2049-2 CrossRefGoogle Scholar
  17. 17.
    Madrakian T, Alizadeh S, Bahram M, Afkhami A (2017) A novel electrochemical sensor based on magneto LDH/Fe3O4 nanoparticles@glassy carbon electrode for voltammetric determination of tramadol in real samples. Ionics 23(4):1005–1015.  https://doi.org/10.1007/s11581-016-1871-2 CrossRefGoogle Scholar
  18. 18.
    Khan I, Pandit UJ, Wankar S, Das R, Limaye SN (2017) Fabrication of electrochemical nanosensor based on polyaniline film-coated AgNP-MWCNT-modified GCE and its application for trace analysis of fenitrothion. Ionics 23(5):1293–1308.  https://doi.org/10.1007/s11581-016-1939-z CrossRefGoogle Scholar
  19. 19.
    Gan T, Shi ZX, Wang KL, Chen YY, Sun JY, Liu YM (2015) Size-controlled core-shell-structured Ag@carbon spheres for electrochemical sensing of bisphenol A. J Solid State Electrochem 19(8):2299–2309.  https://doi.org/10.1007/s10008-015-2860-5 CrossRefGoogle Scholar
  20. 20.
    Gan T, Lv Z, Sun JY, Shi ZX, Liu YM (2016) Preparation of graphene oxide-wrapped carbon sphere@silver spheres for high performance chlorinated phenols sensor. Measurement 302:188–197Google Scholar
  21. 21.
    Taei M, Hadadzadeh H, Hasanpour F, Tavakkoli N, Dolatabadi MH (2015) Simultaneous electrochemical determination of ascorbic acid, epinephrine, and uric acid using a polymer film-modified electrode based on Au nanoparticles/poly(3,3′,5,5′-tetrabromo-m-cresolsulfonphthalein). Ionics 21(12):3267–3278.  https://doi.org/10.1007/s11581-015-1515-y CrossRefGoogle Scholar
  22. 22.
    Oh SD, Lee SH, Choi SH, Lee IS, Lee YM, Chun JH, Park HJ (2006) Synthesis of Ag and Ag–SiO2 nanoparticles by γ-irradiation and their antibacterial and antifungal efficiency against Salmonella enterica serovar Typhimurium and Botrytis cinerea. Colloids Surf A Physicochem Eng Asp 275(1-3):228–233.  https://doi.org/10.1016/j.colsurfa.2005.11.039 CrossRefGoogle Scholar
  23. 23.
    Akhavan O (2009) Lasting antibacterial activities of Ag-TiO2/Ag/α-TiO2 nanocomposite thin film photocatalysts under solar light irradiation. J Colloid Interface Sci 336(1):117–124.  https://doi.org/10.1016/j.jcis.2009.03.018 CrossRefGoogle Scholar
  24. 24.
    Gan T, Lv Z, Sun JY, Shi ZX, Liu YM (2016) Preparation of graphene oxide-wrapped carbon sphere@silver spheres for high performance chlorinated phenols sensor. J Hazard Mater 302:188–197.  https://doi.org/10.1016/j.jhazmat.2015.09.061 CrossRefGoogle Scholar
  25. 25.
    Gan T, Lv Z, Deng YP, Sun JY, Shi ZX, Liu YM (2015) Facile synthesis of monodisperse Ag@C@Ag core-double shell spheres for application in the simultaneous sensing of thymol and phenol. New J Chem 39(8):6244–6252.  https://doi.org/10.1039/C5NJ00881F CrossRefGoogle Scholar
  26. 26.
    Inoue Y, Hoshino M, Takahashi H, Noguchi T, Murata T, Kanzaki Y, Hamashima H, Sasatsu M (2002) Bactericidal activity of Ag-zeolite mediated by reactive oxygen species under aerated conditions. J Inorg Biochem 92(1):37–42.  https://doi.org/10.1016/S0162-0134(02)00489-0 CrossRefGoogle Scholar
  27. 27.
    Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26(1):62–69.  https://doi.org/10.1016/0021-9797(68)90272-5 CrossRefGoogle Scholar
  28. 28.
    Haiss WG, Nguyen T, Thanh K, Aveyard J, Fernig DG (2001) Determination of size and concentration of gold nanoparticles from UV-Vis spectra. Anal Chem 79:4215–4221CrossRefGoogle Scholar
  29. 29.
    Zong S, Cao Y, Jua H (2007) Direct electron transfer of hemoglobin immobilized in multiwalled carbon nanotubes enhanced grafted collagen matrix for electrocatalytic detection of hydrogen peroxide. Electroanalysis 19(7-8):841–846.  https://doi.org/10.1002/elan.200603783 CrossRefGoogle Scholar
  30. 30.
    Laviron E (1974) Adsorption, autoinhibition and autocatalysis in polarography and in linear potential sweep voltammetry. J Electroanal Chem Interfac 52(3):355–393.  https://doi.org/10.1016/S0022-0728(74)80448-1 CrossRefGoogle Scholar
  31. 31.
    Shams N, Lim HN, Hajian R, Yusof NA, Abdullah J, Sulaiman Y, Ibrahim I, Huang NM, Pandikumar A (2016) A promising electrochemical sensor based on Au nanoparticles decorated reduced graphene oxide for selective detection of herbicide diuron in natural waters. J Appl Electrochem 46(6):655–666.  https://doi.org/10.1007/s10800-016-0950-4 CrossRefGoogle Scholar
  32. 32.
    Mugadza T, Nyokong T (2010) Electrocatalytic oxidation of amitrole and diuron on iron(II) tetraaminophthalocyanine-single walled carbon nanotube dendrimer. Electrochim Acta 55(8):2606–2613.  https://doi.org/10.1016/j.electacta.2009.12.051 CrossRefGoogle Scholar
  33. 33.
    Mani V, Devasenathipathy R, Chen SM, Wu TY, Kohilarani K (2015) High-performance electrochemical amperometric sensors for the sensitive determination of phenyl urea herbicides diuron and fenuron. Ionics 21(9):2675–2683.  https://doi.org/10.1007/s11581-015-1459-2 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains & Henan Province Key Laboratory of Utilization of Non-metallic Mineral in the South of HenanXinyang Normal UniversityXinyangPeople’s Republic of China
  2. 2.Culinary Science Key Laboratory of Sichuan ProvinceSichuan Tourism UniversityChengduPeople’s Republic of China

Personalised recommendations