Advertisement

Ionics

, Volume 24, Issue 6, pp 1701–1708 | Cite as

Electrochemical, morphological, and spectroscopic study of poly(aniline-co-o-bromoaniline) (PA-co-o-BrA) conducting copolymer

  • Umesh S. WawareEmail author
  • Gabriel J. SummersEmail author
  • Mohd Rashid
  • A. M. S. Hamouda
Original Paper

Abstract

A series of moderately conducting and soluble copolymers of poly(aniline-co-o-bromoaniline) (PA-co-o-BrA) having different compositions was obtained by in the situ copolymerization method using different concentrations of monomer units of aniline and o-bromoaniline in the feed. The physio-chemical properties of the copolymers have been studied with sophisticated instrumental techniques. The electrochemical study of the copolymers was conducted by cyclic voltammetry. The band gap of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of the copolymers was evaluated by UV-vis spectroscopy. The morphological study was conducted by scanning electron microscopy and transmission electron microscopy at high magnification which shows non-uniform tubular to globular morphology of the copolymers. Surface profiles of the polymers were studied by AFM analyses, and it has confirmed the smooth surface of the copolymers while the homopolymers possesses non-uniform surfaces. The particle size distribution curve indicates that the particle sizes vary in the range of 5 to 9000 nm, and a small fraction of particles possess a size in the range of 5–10 nm.

Keywords

Polyaniline Oxidative copolymerization Poly-o-bromoaniline Conductive polymers Cyclic voltammetry AFM TEM SEM 

Notes

Acknowledgments

Funding for the current research from Qatar University, and University of South Africa (UNISA) is gratefully acknowledged.

References

  1. 1.
    Duong NN, Hyeonseok Y (2016) Polymers 8(118):1–38Google Scholar
  2. 2.
    Lapkowski M (1990) Synth Met 35:169–182CrossRefGoogle Scholar
  3. 3.
    Cardova R, del Valle M, Arratia A, Gomez H, Schrelber R (1994) J Electoanal Chem 377:75–83CrossRefGoogle Scholar
  4. 4.
    MacDiarmid A, Chiang J, Richter A, Epstein A (1987) Synth Met 18:285–290CrossRefGoogle Scholar
  5. 5.
    Amer I, Mokrani T, Jewell L, Young DA, Vosloo HCM (2016) Tetrahedron Lett 57:426–430Google Scholar
  6. 6.
    Gabal MA, Hussein MA, Hermas AA (2016) Int J Electrochem Sci 11:4526–4538CrossRefGoogle Scholar
  7. 7.
    Pron A, Rannou P (2002) Prog Polym Sci 27:135–190CrossRefGoogle Scholar
  8. 8.
    Kumar D (2000) Synth Met 114:369–372CrossRefGoogle Scholar
  9. 9.
    Sahin Y, Percin S, Sahin M, Ozkan G (2003) J App Polym Sci 90:2460–2468CrossRefGoogle Scholar
  10. 10.
    Yue J, Epstein AJ, Zhong Z, Gallopher PZ, Macdiarmid AG (1991) Synth Met 41:765–768CrossRefGoogle Scholar
  11. 11.
    Sahin Y, Perkmez K, Yaldiz A (2002) Synth Met 129:107–115CrossRefGoogle Scholar
  12. 12.
    Sahin Y, Perkmez K, Yaldiz A (2002) J App Sci 85:1227–1235CrossRefGoogle Scholar
  13. 13.
    Sahin Y, Perkmez K, Yaldiz A (2002) Synth Met 131:7–14CrossRefGoogle Scholar
  14. 14.
    Palaniappan S (2000) Polym Int 49:659–662CrossRefGoogle Scholar
  15. 15.
    Rajendra V, Prakash S, Gopalan A, Vasudevan T, Chen W-C, Wen T-C (2001) Matter Chem Phys 69:62–71CrossRefGoogle Scholar
  16. 16.
    Mav I, Zigon M (2001) Synth Met 119:145–146CrossRefGoogle Scholar
  17. 17.
    Sharma AL, Saxena V, Annapoorni S, Malhotra BD (2001) J Appl Polym Sci 81:1460–1466CrossRefGoogle Scholar
  18. 18.
    Sahin Y, Pekmez K, Yildiz A (2002) Synth Metal 129:117–121CrossRefGoogle Scholar
  19. 19.
    Sahin Y, Percin S, Sahin GO, Alsanacak J (2003) Appl Polym Sci 89:1652–1658CrossRefGoogle Scholar
  20. 20.
    Waware US, Mohd Rashid, Summers GJ (2014) J Adv Phys 3:1–6Google Scholar
  21. 21.
    Gupta MC, Umare SS, Huque MM, Visvanath SG (1997) Ind J Chem 36 B:703–710Google Scholar
  22. 22.
    Umare SS, Huque MM, Gupta MC, Visvanath SG (1996) Macromol Rep A33:381–389Google Scholar
  23. 23.
    Waware US, Umare SS, Ingole S, Viswanath SG (2005) Int J Polym Anal Charact 10:1–13CrossRefGoogle Scholar
  24. 24.
    Borkar AD, Gupta MC, Umare SS (2001) Polym Plast Technol Eng 40:225–234CrossRefGoogle Scholar
  25. 25.
    Ye S, Do NT, Dao LH, Vijh AK (1997) Synth Met 88:65–72CrossRefGoogle Scholar
  26. 26.
    Waware US, Umare SS (2005) React Funct Polym 65:343–350CrossRefGoogle Scholar
  27. 27.
    Mahudeswaran A, Vivekanandan J, Vijayanand PS, Kojima T, Kato S (2016) Int J Mod Phy B 30:1650008CrossRefGoogle Scholar
  28. 28.
    Sahin Y et al (2003) J Appl Polym Sci 89:1652–1658CrossRefGoogle Scholar
  29. 29.
    Xu L, Guo P, He H, Zhou N, Ma J, Wang G, Zhang C, Su C (2017) Int J Ionic 23:1375–1382CrossRefGoogle Scholar
  30. 30.
    Ghose S, Kalpagam V (1989) Synth Met 33:11–17CrossRefGoogle Scholar
  31. 31.
    Ginder JM, Epstein AJ (1990) Phys Rev B 41:10674CrossRefGoogle Scholar
  32. 32.
    Zho WS, Cromak K, MacDiarmid AG (1991) J Am Chem Soc 113:2665–2671CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Mechanical and Industrial EngineeringQatar UniversityDohaQatar
  2. 2.Department of ChemistryUniversity of South AfricaPretoriaSouth Africa
  3. 3.Department of ChemistryAligarh College of EducationAligarhIndia

Personalised recommendations