, Volume 24, Issue 6, pp 1813–1826 | Cite as

Electrospun CeO2–Au nanofibers/graphene oxide 3D nanonetwork structure for the electrocatalytic detection of amlodipine

  • Majid ArvandEmail author
  • Hedieh Asadi Samie
Original Paper


A novel electrochemical sensing platform based on CeO2–Au nanofibers (CeO2–AuNFs) and graphene oxide nanosheets (GO) is proposed for highly sensitive determination of amlodipine (AML) in aqueous media. The CeO2–Au hybrid nanofibers were prepared by the electrospinning technique and then annealed in air. The electrospun CeO2–AuNFs and GO were characterized by different techniques such as transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive X-ray analysis (EDS), and Fourier transform infrared spectroscopy (FT–IR). The CeO2–AuNFs/GO-modified glassy carbon electrode) CeO2–AuNFs/GO/GCE (displayed excellent electrochemical catalytic activity toward the oxidation of amlodipine. Using differential pulse voltammetry (DPV), the prepared sensor showed good sensitivity for determining AML in two linear ranges of 0.01–10 and 10–1000 μmol L−1, with a detection limit of 2.5 nmol L−1. Electrochemical studies indicated that the CeO2–AuNFs/GO/GCE provided a synergistic augmentation on the voltammetric behavior of the electrochemical oxidation of AML. The proposed sensor was successfully applied for the determination of AML in human blood serum, plasma, and pharmaceutical samples with excellent recoveries and without the interferences of coexisting substances.


Electrospun CeO2/Au nanofibers Electrospinning Graphene oxide Nanocomposite Amlodipine 



The authors are thankful to the post-graduate office of the Guilan University for the support of this work.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Arvand M, Gholizadeh TM (2013) Gold nanorods-graphene oxide nanocomposite incorporated carbon nanotube paste modified glassy carbon electrode for voltammetric determination of indomethacin. Sensors Actuators B Chem 186:622–632CrossRefGoogle Scholar
  2. 2.
    Arvand M, Ghodsi N (2014) Electrospun TiO2 nanofiber/graphite oxide modified electrode for electrochemical detection of l-DOPA in human cerebrospinal fluid. Sensors Actuators B Chem 204:393–401CrossRefGoogle Scholar
  3. 3.
    Choi KS, Park S, Chang SP (2017) Enhanced ethanol sensing properties based on SnO2 nanowires coated with Fe2O3 nanoparticles. Sensors Actuators B Chem 238:871–879CrossRefGoogle Scholar
  4. 4.
    Cao X, Cai X, Wang N (2011) Selective sensing of dopamine at MnOOH nanobelt modified electrode. Sensors Actuators B Chem 160:771–776CrossRefGoogle Scholar
  5. 5.
    Xin X, Sun S, Li H, Wang M, Jia R (2015) Electrochemical bisphenol A sensor based on core-shell multiwalled carbon nanotubes/graphene oxide nanoribbons. Sensors Actuators B Chem 209:275–280CrossRefGoogle Scholar
  6. 6.
    Wu H, Pan W, Lin D, Li H (2012) Electrospinning of ceramic nanofibers: fabrication, assembly and applications. J Adv Ceram 1:2–23CrossRefGoogle Scholar
  7. 7.
    Samadi M, Shivaee HA, Zanetti M, Moshfegh A (2012) Visible light photocatalytic activity of novel MWCNT–doped ZnO electrospun nanofibers. J Mol Catal A 359:42–48CrossRefGoogle Scholar
  8. 8.
    Huang CB, Lucas B, Vervaet C, Braeckmans K, Calenbergh SV, Karalic L, Vandewoestyne M, Deforce D, Demeester J, De Smedt SC (2010) Unbreakable codes in electrospun fibers: digitally encoded polymers to stop medicine counterfeiting. Adv Mater 22:2657–2662CrossRefPubMedGoogle Scholar
  9. 9.
    Hartgerink JD, Beniash E, Stupp SI (2002) Peptide-amphiphile nanofibers: a versatile scaffold for the preparation of self assembling materials. Proc Natl Acad Sci U S A 99:5133–5138CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Zhang R, Ma PX (2000) Synthetic nanofibrillar extracellular matrices with predesigned macroporous architectures. J Biomed Mater Res 52:430–438CrossRefPubMedGoogle Scholar
  11. 11.
    Feng L, Li S, Li H, Zhai J, Song Y, Jiang L, Zhu D (2002) Super-hydrophobic surface of aligned polyacrylonitrile nanofibers. Angew Chem Int Ed 41:1221–1223CrossRefGoogle Scholar
  12. 12.
    Greiner A, Wendorff JH (2007) Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew Chem Int Ed 46:5670–5703CrossRefGoogle Scholar
  13. 13.
    Li D, Xia Y (2004) Electrospinning of nanofibers: reinventing the wheel? Adv Mater 16:1151–1170CrossRefGoogle Scholar
  14. 14.
    Dzenis Y (2004) Spinning continuous fibers for nanotechnology. Science 304:1917–1919CrossRefPubMedGoogle Scholar
  15. 15.
    Arvand M, Sayyar Ardaki M (2017) Poly-l-cysteine/electrospun copper oxide nanofibers-zinc oxide nanoparticles nanocomposite as sensing element of an electrochemical sensor for simultaneous determination of adenine and guanine in biological samples and evaluation of damage to dsDNA and DNA purine bases by UV radiation. Anal Chim Acta 986:25–41CrossRefPubMedGoogle Scholar
  16. 16.
    Yang XH, Shao CL, Guan HY, Li XL, Gong H (2004) Preparation and characterization of ZnO nanofibers by using electrospun PVA/zinc acetate composite fiber as precursor. Inorg Chem Commun 7:176–178CrossRefGoogle Scholar
  17. 17.
    Ding Y, Wang Y, Su L, Bellagamba M, Zhang H, Lei Y (2010) Electrospun Co3O4 nanofibers for sensitive and selective glucose detection. Biosens Bioelectron 26:542–548CrossRefPubMedGoogle Scholar
  18. 18.
    Ding Y, Liu Y, Zhang L, Wang Y, Bellagamba M, Parisi J, Li CM, Lei Y (2011) Sensitive and selective nonenzymatic glucose detection using functional NiO-Pt hybrid nanofibers. Electrochim Acta 58:209–214CrossRefGoogle Scholar
  19. 19.
    Tong Y, Li Z, Lu X, Yang L, Sun W, Nie G, Wang Z, Wang C (2013) Electrochemical determination of dopamine based on electrospun CeO2/Au composite nanofibers. Electrochim Acta 95:12–17CrossRefGoogle Scholar
  20. 20.
    Li D, Xia YN (2003) Fabrication of titania nanofibers by electrospinning. Nano Lett 3:555–560CrossRefGoogle Scholar
  21. 21.
    Patsalas P, Logothetidis S, Metaxa C (2002) Optical performance of nanocrystalline transparent ceria films. Appl Phys Lett 81:466–468CrossRefGoogle Scholar
  22. 22.
    Maheswari N, Muralidharan G (2015) Supercapacitor behavior of cerium oxide nanoparticles in neutral aqueous electrolytes. Energy Fuel 29:8246–8253CrossRefGoogle Scholar
  23. 23.
    Trovarelli A (1996) Catalytic properties of ceria and CeO2-containing materials. Catal Rev Sci Eng 38:439–520CrossRefGoogle Scholar
  24. 24.
    Yu L, Xi J (2012) CeO2 nanoparticles improved Pt-based catalysts for direct alcohol fuel cell. Int J Hydrog Energy 37:15938–15947CrossRefGoogle Scholar
  25. 25.
    Min L, Zhao L, Yan X, Shuai Y, Hongli S (2014) Study of Ta-doped CeO2 buffer layer for coated conductors. Rare Metal Mater Eng 43:1329–1331CrossRefGoogle Scholar
  26. 26.
    Tsuzuki T, McCormick PG (2001) Synthesis of ultrafine ceria powders by mechanochemical processing. J Am Ceram Soc 84:1453–1458CrossRefGoogle Scholar
  27. 27.
    Gangopadhyay S, Frolov DD, Masunov AE, Seal S (2014) Structure and properties of cerium oxides in bulk and nanoparticulate forms. J Alloys Compd 584:199–208CrossRefGoogle Scholar
  28. 28.
    Wei Y, Li M, Jiao S, Huang Q, Wang G, Fang B (2006) Fabrication of CeO2 nanoparticles modified glassy carbon electrode and its application for electrochemical determination of UA and AA simultaneously. Electrochim Acta 52:766–772CrossRefGoogle Scholar
  29. 29.
    Tang L, Tong Y, Zheng R, Liu W, Gu Y, Li C, Chen R, Zhang Z (2014) Ag nanoparticles and electrospun CeO2-Au composite nanofibers modified glassy carbon electrode for determination of levofloxacin. Sensors Actuators B Chem 203:95–101CrossRefGoogle Scholar
  30. 30.
    Shin MK, Kim YJ, Kim SI, Kim SK, Lee H, Spinks GM, Kim SJ (2008) Enhanced conductivity of aligned PANi/PEO/MWNT nanofibers by electrospinning. Sensors Actuators B Chem 134:122–126CrossRefGoogle Scholar
  31. 31.
    Marx S, Jose MV, Andersen JD, Russell AJ (2011) Electrospun gold nanofiber electrodes for biosensors. Biosens Bioelectron 26:2981–2986CrossRefPubMedGoogle Scholar
  32. 32.
    Su X, Ren J, Meng X, Ren X, Tang F (2013) A novel platform for enhanced biosensing based on the synergy effects of electrospun polymer nanofibers and graphene oxides. Analyst 138:1459–1466CrossRefPubMedGoogle Scholar
  33. 33.
    Tian X, Cheng C, Yuan H, Du J, Xiao D, Xie S, Choi MM (2012) Simultaneous determination of l-ascorbic acid, dopamine and uric acid with gold nanoparticles-beta-cyclodextrin-graphene-modified electrode by square wave voltammetry. Talanta 93:79–85CrossRefPubMedGoogle Scholar
  34. 34.
    Zhao M, Sun L, Crooks RM (1998) Preparation of Cu nanoclusters within dendrimer templates. J Am Chem Soc 120:4877–4878CrossRefGoogle Scholar
  35. 35.
    Yan E, Xu G, Wang S, Wang C, Yang C, Xie Y, Lv L, Ni L, Jing T (2013) Preparation and research on the performance of PPV/PVP/Au composite nanofibers by electrospinning. Int J Electrochem Sci 8:12683–12691Google Scholar
  36. 36.
    Park SJ, Ruoff RS (2009) Chemical methods for the production of graphene. Nat Nanotechnol 4:217–224CrossRefPubMedGoogle Scholar
  37. 37.
    Chattopadhyay J, Mukherjee A, Hamilton CE, Kang J, Chakraborty S, Guo WH, Kelly KF, Barron AR, Billups WE (2008) Graphite epoxide. J Am Chem Soc 130:5414–5415CrossRefPubMedGoogle Scholar
  38. 38.
    Joung D, Chunder A, Zhai L, Khondaker SI (2010) Space charge limited conduction with exponential trap distribution in reduced graphene oxide sheets. Appl Phys Lett 97:093105CrossRefGoogle Scholar
  39. 39.
    Gan T, Hu C, Chen Z, Hu S (2010) Fabrication and application of a novel plant hormone sensor for the determination of methyl jasmonate based on self-assembling of phosphotungstic acid-graphene oxide nanohybrid on graphite electrode. Sensors Actuators B Chem 151:8–14CrossRefGoogle Scholar
  40. 40.
    Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22:3906–3924CrossRefGoogle Scholar
  41. 41.
    Zhang L, Xia J, Zhao Q, Liu L, Zhang Z (2010) Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small 6:537–544CrossRefPubMedGoogle Scholar
  42. 42.
    De Portu S, Menditto E, Scalone L, Bustacchini S, Cricelli C, Mantovani LG (2006) The pharmacoeconomic impact of amlodipine use on coronary artery disease. Pharmacol Res 54:158–163CrossRefPubMedGoogle Scholar
  43. 43.
    Kumar VA, Aravind G, Srikanth I, Srinivasarao A, Raju DC (2012) Novel analytical method development and validation for the determination of residual solvents in amlodipine besylate by gas chromatography. Der Pharma Chem 4:2228–2238Google Scholar
  44. 44.
    Klinkenberg R, Streel B, Ceccato A (2003) Development and validation of a liquid chromatographic method for the determination of amlodipine residues on manufacturing equipment surfaces. J Pharm Biomed Anal 32:345–352CrossRefPubMedGoogle Scholar
  45. 45.
    Shah SK, Asnani AJ, Kawade DP, Dangre SC, Arora SK, Yende SR (2012) Simultaneous quantitative analysis of olmesartan medoxomil and amlodipine besylate in plasma by high performance liquid chromatography technique. J Young Pharm 4:88–94CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Li J, Li Y, Zhang W, Chen Z, Fan G (2013) Glucose-b-CD interaction assisted CAN field amplified sample stacking in CZE for determination of trace amlodipine in beagle dog plasma. J Sep Sci 36:1817–1825CrossRefPubMedGoogle Scholar
  47. 47.
    Darwish HW, Hassan SA, Salem MY, El-Zeany BA (2013) Three different methods for determination of binary mixture of amlodipine and atorvastatin using dual wavelength spectrophotometry. Spectrochim Acta A 104:70–76CrossRefGoogle Scholar
  48. 48.
    Kazemipour M, Ansari M, Mohammadi A, Beitollahi H, Ahmadi R (2009) Use of adsorptive square-wave anodic stripping voltammetry at carbon paste electrode for the determination of amlodipine besylate in pharmaceutical preparations. Anal Chem 64:65–70CrossRefGoogle Scholar
  49. 49.
    Altiokka G, Dogrukol-Ak D, Tunçel M, Aboul-Enein HY (2002) Determination of amlodipine in pharmaceutical formulations by differential-pulse voltammetry with a glassy carbon electrode. Arch Pharm 335:104–108CrossRefGoogle Scholar
  50. 50.
    Erden PE, Taşdemir IH, Kaçar C, Kiliç E (2014) Simultaneous determination of valsartan and amlodipine besylate in human serum and pharmaceutical dosage forms by voltammetry. Int J Electrochem Sci 9:2208–2220Google Scholar
  51. 51.
    Sikkander AMR, Vedhi C, Manisankar P (2012) Electrochemical determination of calcium channel blocker drugs using multiwall carbon nanotube-modified glassy carbon electrode. Int J Ind Chem 3:29–36CrossRefGoogle Scholar
  52. 52.
    Stoiljković ZZ, Avramov Ivić ML, Petrović SD, Mijin DZ, Stevanović SI, Lačnjevac UC, Marinković AD (2012) Voltammetric and square-wave anodic stripping determination of amlodipine besylate on gold electrode. Int J Electrochem Sci 7:2288–2303Google Scholar
  53. 53.
    Goyal RN, Bishnoi S (2010) Voltammetric determination of amlodipine besylate in human urine and pharmaceuticals. Bioelectrochemistry 79:234–240CrossRefPubMedGoogle Scholar
  54. 54.
    Švorc L, Cinková K, Sochr J, Vojs M, Michniak P, Marton M (2014) Sensitive electrochemical determination of amlodipine in pharmaceutical tablets and human urine using a boron-doped diamond electrode. J Electroanal Chem 728:86–93CrossRefGoogle Scholar
  55. 55.
    Khairy M, Khorshed AA, Rashwan FA, Salah GA, Abdel-Wadood HM, Banks CE (2017) Sensitive determination of amlodipine besylate using bare/unmodified and DNA-modified screen-printed electrodes in tablets and biological fluids. Sensors Actuators B Chem 239:768–775CrossRefGoogle Scholar
  56. 56.
    Brodie BC (1860) On the atomic weight of graphite. Ann Chim Phys 59:466–472Google Scholar
  57. 57.
    Wang W, Zhang L, Tong S, Li X, Song W (2009) Three-dimensional network films of electrospun copper oxide nanofibers for glucose determination. Biosens Bioelectron 25:708–714CrossRefPubMedGoogle Scholar
  58. 58.
    Cui Q, Dong X, Wang J, Li M (2008) Direct fabrication of cerium oxide hollow nanofibers by electrospinning. J Rare Earths 26:664–669CrossRefGoogle Scholar
  59. 59.
    Arvand M, Gholizadeh TM (2013) Simultaneous voltammetric determination of tyrosine and paracetamol using a carbon nanotube-graphene nanosheet nanocomposite modified electrode in human blood serum and pharmaceuticals. Colloids Surf B 103:84–93CrossRefGoogle Scholar
  60. 60.
    Dogan-Topal B, Bozal B, Demircigil BT, Uslu B, Ozkan SA (2009) Electroanalytical studies and simultaneous determination of amlodipine besylate and atorvastatine calcium in binary mixtures using first derivative of the ratio voltammetric methods. Electroanalysis 21:2427–2439Google Scholar
  61. 61.
    Mohammadi A, Moghaddam AB, Eilkhanizadem K, Alikhani E, Mozaffari S, Yavari T (2013) Electro-oxidation and simultaneous determination of amlodipine and atorvastatin in commercial tablets using carbon nanotube modified electrode. Nano Lett 8:413–417CrossRefGoogle Scholar
  62. 62.
    Arkan E, Karimi Z, Shamsipur M, Saber R (2014) An electrochemical senor for determination of amlodipine besylate based on graphene–chitosan nanocomposite film modified glassy carbon electrode and application in biological and pharmaceutical samples. J Rep Pharm Sci 3:99–107Google Scholar
  63. 63.
    Mansano GR, Eisele APP, Dall’Antonia LH, Afonso S, Sartori ER (2015) Electroanalytical application of a boron-doped diamond electrode: improving the simultaneous voltammetric determination of amlodipine and valsartan in urine and combined dosage forms. J Electroanal Chem 738:188–194CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Electroanalytical Chemistry Laboratory, Faculty of ChemistryUniversity of GuilanRashtIran

Personalised recommendations