Compatibility study of oxide and olivine cathode materials with lithium aluminum titanium phosphate
- 203 Downloads
Abstract
The compatibility of the solid electrolyte Li1.5Al0.5Ti1.5(PO4)3 (LATP) with the cathode materials LiCoO2, LiMn2O4, LiCoPO4, LiFePO4, and LiMn0.5Fe0.5PO4 was investigated in a co-sintering study. Mixtures of LATP and the different cathode materials were sintered at various temperatures and subsequently analyzed by thermal analysis, X-ray diffraction, and electron microscopy. Oxide cathode materials display a rapid decomposition reaction with the electrolyte material even at temperatures as low as 500 °C, while olivine cathode materials are much more stable. The oxide cathode materials tend to decompose to lithium-free compounds, leaving lithium to form Li3PO4 and other metal phosphates. In contrast, the olivine cathode materials decompose to mixed phosphates, which can, in part, still be electrochemically active. Among the olivine cathode materials, LiFePO4 demonstrated the most promising results. No secondary phases were detected by X-ray diffraction after sintering a LATP/LiFePO4 mixture at temperatures as high as 700 °C. Electron microscopy revealed a small secondary phase probably consisting of Li2FeTi(PO4)3, which is ionically conductive and should be electrochemically active as well.
Keywords
Li-ion battery All-solid-state battery LATP Co-sintering OlivinesNotes
Acknowledgements
We thank M. T. Gerhards for the DTA/TG measurements. We also thank the German Federal Ministry of Education and Research (BMBF) for the financial support (reference numbers 03XP0047B and 03XP0026E).
Compliance with ethical standards
Conflict of interest
The authors declare that they have no conflict of interest.
Supplementary material
References
- 1.Janek J, Zeier WG (2016) Nature Energy 1:16141CrossRefGoogle Scholar
- 2.Kato Y, Hori S, Saito T, Suzuki K, Hirayama M, Mitsui A, Yonemura M, Iba H, Kanno R (2016) Nature Energy 1:16030CrossRefGoogle Scholar
- 3.Kato Y, Kawamoto K, Kanno R, Hirayama M (2012) Electrochemistry 80(10):749CrossRefGoogle Scholar
- 4.Bron P, Dehnen S, Roling B (2016) J Power Sources 329:530CrossRefGoogle Scholar
- 5.Takada K, Ohta N, Zhang LQ, Xu XX, Hang BT, Ohnishi T, Osada M, Sasaki T (2012) Solid State Ionics 225:594CrossRefGoogle Scholar
- 6.Ohta N, Takada K, Sakaguchi I, Zhang L, Ma R, Fukuda K, Osada M, Sasaki T (2007) Electrochem Commun 9(7):1486CrossRefGoogle Scholar
- 7.Muramatsu H, Hayashi A, Ohtomo T, Hama S, Tatsumisago M (2011) Solid State Ionics 182(1):116CrossRefGoogle Scholar
- 8.Tsai C-L, Dashjav E, Hammer E-M, Finsterbusch M, Tietz F, Uhlenbruck S, Buchkremer HP (2015) J Electroceram 35(1):25CrossRefGoogle Scholar
- 9.Lalère F, Leriche JB, Courty M, Boulineau S, Viallet V, Masquelier C, Seznec V (2014) J Power Sources 247:975CrossRefGoogle Scholar
- 10.Nagata K, Nanno T (2007) J Power Sources 174(2):832CrossRefGoogle Scholar
- 11.Han X, Gong Y, Fu K, He X, Hitz GT, Dai J, Pearse A, Liu B, Wang H, Rubloff G, Mo Y, Thangadurai V, Wachsman ED, Hu L (2017) Nat Mater 16(5):572CrossRefGoogle Scholar
- 12.Stramare S, Thangadurai V, Weppner W (2003) Chem Mater 15(21):3974CrossRefGoogle Scholar
- 13.Knauth P (2009) Solid State Ionics 180(14–16):911CrossRefGoogle Scholar
- 14.Aono H, Sugimoto E, Sadaoka Y, Imanaka N, Adachi Gy (1990) J Electrochem Soc 137(4):1023CrossRefGoogle Scholar
- 15.Gellert M, Gries KI, Yada C, Rosciano F, Volz K, Roling B (2012) J Phys Chem C 116(43):22675CrossRefGoogle Scholar
- 16.Mariappan CR, Gellert M, Yada C, Rosciano F, Roling B (2012) Electrochem Commun 14(1):25CrossRefGoogle Scholar
- 17.Ma Q, Xu Q, Tsai C-L, Tietz F, Guillon O (2016) J Am Ceram Soc 99(2):410CrossRefGoogle Scholar
- 18.Monchak M, Hupfer T, Senyshyn A, Boysen H, Chernyshov D, Hansen T, Schell KG, Bucharsky EC, Hoffmann MJ, Ehrenberg H (2016) Inorg Chem 55(6):2941CrossRefGoogle Scholar
- 19.Epp V, Ma QL, Hammer EM, Tietz F, Wilkening M (2015) Phys Chem Chem Phys 17(48):32115CrossRefGoogle Scholar
- 20.Jimenez R, del Campo A, Calzada ML, Sanz J, Kobylianska SD, Solopan SO, Belous AG (2016) J Electrochem Soc 163(8):A1653CrossRefGoogle Scholar
- 21.Miara L, Windmüller A, Tsai C-L, Richards WD, Ma Q, Uhlenbruck S, Guillon O, Ceder G (2016) ACS Appl Mater Interfaces 8(40):26842CrossRefGoogle Scholar
- 22.Uhlenbruck S, Dornseiffer J, Lobe S, Dellen C, Tsai C-L, Gotzen B, Sebold D, Finsterbusch M, Guillon O (2016) Cathode-electrolyte material interactions during manufacturing of inorganic solid-state lithium batteries. J Electroceram 1–10. https://doi.org/10.1007/s10832-016-0062-x
- 23.Li Q, Chou S-L, Wang J-Z, Shi D, Liu H-K (2014) Solid State Ionics 268:117CrossRefGoogle Scholar
- 24.Hamdy MS, Amrollahi R, Mul G (2012) ACS Catal 2(12):2641CrossRefGoogle Scholar
- 25.Hu C, Wu Y, Dai Y (2014) Funct Mater Lett 07(02):1450016CrossRefGoogle Scholar
- 26.Catti M, Comotti A, Di Blas S, Ibberson RM (2004) J Mater Chem 14(5):835CrossRefGoogle Scholar
- 27.Catti M (2001) J Solid State Chem 156(2):305CrossRefGoogle Scholar
- 28.Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) J Electrochem Soc 144(4):1188CrossRefGoogle Scholar