Ionics

, Volume 24, Issue 4, pp 1111–1119 | Cite as

Palladium nanoparticles supported on phosphorus-doped carbon for ethanol electro-oxidation in alkaline media

  • Júlio César M. Silva
  • Isabel C. de Freitas
  • Almir O. Neto
  • Estevam V. Spinacé
  • Vilmaria A. Ribeiro
Original Paper
  • 154 Downloads

Abstract

Palladium nanoparticles supported on carbon Vulcan XC72 (Pd/C) and on phosphorus-doped carbon (Pd/P-C) were prepared by an alcohol reduction process. X-ray diffractograms of Pd/C and Pd/P-C showed the typical face-centered cubic (fcc) structure of Pd. The crystallite sizes of Pd fcc phase were around 8 nm for both samples. X-ray photoelectron spectroscopy revealed to Pd/C and Pd/P-C that Pd was found predominantly in the metallic state and to Pd/P-C, the presence of P increases the amount of oxygen on the electrocatalyst surface. The activity and stability of the electrocatalyts for ethanol electro-oxidation in alkaline medium was investigated by cyclic voltammetry and chronoamperometry experiments. The peak current density on Pd/P-C was 50% higher than on Pd/C, while the current density measured after 30 min at − 0.35 V vs. Hg/HgO was 65% higher on Pd/P-C than on Pd/C. The enhancement of the catalytic activity of Pd/P-C electrocatalyst might be related to the presence of higher amounts of oxygen species on the surface, which could contribute to the oxidation of intermediates formed during ethanol electro-oxidation process.

Keywords

Palladium nanoparticles Phosphorus-doped carbon Ethanol electro-oxidation Alkaline media 

Notes

Acknowledgements

The authors wish to thank CNPq (Proc. Nos. 166089/2015-0, 402850/2015-7, 168251/2014-0, and 310051/2012-6), FAPESP (Proc. No. 2014/09087-4), and CAPES for the financial support. We also thank the Brazilian Synchrotron Light Laboratory (LNLS) for the access to the XPS facility, for the use of TEM facilities (JEOL JEM-2100F) of LNNano-CNPEM, and Dr. Daniela Coelho de Oliveira for the XPS analysis support.

References

  1. 1.
    Chen C-Y, Lai W-H, Yan W-M, Chen C-C, Hsu S-W (2013) Effects of nitrogen and carbon monoxide concentrations on performance of proton exchange membrane fuel cells with Pt–Ru anodic catalyst. J Power Sources 243:138–146.  https://doi.org/10.1016/j.jpowsour.2013.06.003 CrossRefGoogle Scholar
  2. 2.
    Nachiappan N, Kalaignan GP, Sasikumar G (2013) Effect of nitrogen and carbon dioxide as fuel impurities on PEM fuel cell performances. Ionics 19(2):351–354.  https://doi.org/10.1007/s11581-012-0730-z CrossRefGoogle Scholar
  3. 3.
    Jain SL, Lakeman B, Pointon KD, Irvine JTS (2007) Carbon–air fuel cell development to satisfy our energy demands. Ionics 13(6):413–416.  https://doi.org/10.1007/s11581-007-0161-4 CrossRefGoogle Scholar
  4. 4.
    Kim M-S, Fang B, Chaudhari NK, Song M, Bae T-S, Yu J-S (2010) A highly efficient synthesis approach of supported Pt-Ru catalyst for direct methanol fuel cell. Electrochim Acta 55(15):4543–4550.  https://doi.org/10.1016/j.electacta.2010.03.007 CrossRefGoogle Scholar
  5. 5.
    Zignani SC, Baglio V, Linares JJ, Monforte G, Gonzalez ER, Aricò AS (2012) Performance and selectivity of PtxSn/C electro-catalysts for ethanol oxidation prepared by reduction with different formic acid concentrations. Electrochim Acta 70:255–265CrossRefGoogle Scholar
  6. 6.
    Qi J, Benipal N, Liang C, Li W (2016) PdAg/CNT catalyzed alcohol oxidation reaction for high-performance anion exchange membrane direct alcohol fuel cell (alcohol = methanol, ethanol, ethylene glycol and glycerol). Appl Catal B Environ 199:494–503.  https://doi.org/10.1016/j.apcatb.2016.06.055 CrossRefGoogle Scholar
  7. 7.
    Santasalo-Aarnio A, Tuomi S, Jalkanen K, Kontturi K, Kallio T (2013) The correlation of electrochemical and fuel cell results for alcohol oxidation in acidic and alkaline media. Electrochim Acta 87:730–738.  https://doi.org/10.1016/j.electacta.2012.09.100 CrossRefGoogle Scholar
  8. 8.
    Antolini E, Gonzalez ER (2010) Alkaline direct alcohol fuel cells. J Power Sources 195(11):3431–3450.  https://doi.org/10.1016/j.jpowsour.2009.11.145 CrossRefGoogle Scholar
  9. 9.
    Zhu LD, Zhao TS, Xu JB, Liang ZX (2009) Preparation and characterization of carbon-supported sub-monolayer palladium decorated gold nanoparticles for the electro-oxidation of ethanol in alkaline media. J Power Sources 187(1):80–84.  https://doi.org/10.1016/j.jpowsour.2008.10.089 CrossRefGoogle Scholar
  10. 10.
    Geraldes AN, da Silva DF, Pino ES, da Silva JCM, de Souza RFB, Hammer P, Spinacé EV, Neto AO, Linardi M, dos Santos MC (2013) Ethanol electro-oxidation in an alkaline medium using Pd/C, Au/C and PdAu/C electrocatalysts prepared by electron beam irradiation. Electrochim Acta 111:455–465.  https://doi.org/10.1016/j.electacta.2013.08.021 CrossRefGoogle Scholar
  11. 11.
    Maffei N, Pelletier L, McFarlan A (2008) A high performance direct ammonia fuel cell using a mixed ionic and electronic conducting anode. J Power Sources 175(1):221–225.  https://doi.org/10.1016/j.jpowsour.2007.09.040 CrossRefGoogle Scholar
  12. 12.
    Tsiouvaras N, Martínez-Huerta MV, Paschos O, Stimming U, Fierro JLG, Peña MA (2010) PtRuMo/C catalysts for direct methanol fuel cells: effect of the pretreatment on the structural characteristics and methanol electrooxidation. Int J Hydrog Energy 35(20):11478–11488.  https://doi.org/10.1016/j.ijhydene.2010.06.053 CrossRefGoogle Scholar
  13. 13.
    Geraldes AN, da Silva DF, e Silva LG, Spinacé EV, Neto AO, dos Santos MC (2015) Binary and ternary palladium based electrocatalysts for alkaline direct glycerol fuel cell. J Power Sources 293:823–830.  https://doi.org/10.1016/j.jpowsour.2015.06.010 CrossRefGoogle Scholar
  14. 14.
    Mikolajczuk-Zychora A, Borodzinski A, Kedzierzawski P, Mierzwa B, Mazurkiewicz-Pawlicka M, Stobinski L, Ciecierska E, Zimoch A, Opałło M (2016) Highly active carbon supported Pd cathode catalysts for direct formic acid fuel cells. Appl Surf Sci 388(Part B):645–652.  https://doi.org/10.1016/j.apsusc.2016.02.065 CrossRefGoogle Scholar
  15. 15.
    Tsujiguchi T, Matsuoka F, Hokari Y, Osaka Y, Kodama A (2016) Overpotential analysis of the direct formic acid fuel cell. Electrochim Acta 197:32–38.  https://doi.org/10.1016/j.electacta.2016.03.062 CrossRefGoogle Scholar
  16. 16.
    Neto AO, da Silva SG, Buzzo GS, de Souza RFB, Assumpção MHMT, Spinacé EV, Silva JCM (2014) Ethanol electrooxidation on PdIr/C electrocatalysts in alkaline media: electrochemical and fuel cell studies. Ionics:1–9.  https://doi.org/10.1007/s11581-014-1201-5
  17. 17.
    Silva JCM, Anea B, De Souza RFB, Assumpcao MHMT, Calegaro ML, Neto AO, Santos MC (2013) Ethanol oxidation reaction on IrPtSn/C Electrocatalysts with low Pt content. J Braz Chem Soc 24(10):1553–1560.  https://doi.org/10.5935/0103-5053.20130196 Google Scholar
  18. 18.
    Tayal J, Rawat B, Basu S (2011) Bi-metallic and tri-metallic Pt–Sn/C, Pt–Ir/C, Pt–Ir–Sn/C catalysts for electro-oxidation of ethanol in direct ethanol fuel cell. Int J Hydrog Energy 36(22):14884–14897CrossRefGoogle Scholar
  19. 19.
    Shen SY, Zhao TS, Xu JB (2010) Carbon supported PtRh catalysts for ethanol oxidation in alkaline direct ethanol fuel cell. Int J Hydrog Energy 35(23):12911–12917CrossRefGoogle Scholar
  20. 20.
    Sun C-L, Tang J-S, Brazeau N, Wu J-J, Ntais S, Yin C-W, Chou H-L, Baranova EA (2015) Particle size effects of sulfonated graphene supported Pt nanoparticles on ethanol electrooxidation. Electrochim Acta 162:282–289.  https://doi.org/10.1016/j.electacta.2014.12.099 CrossRefGoogle Scholar
  21. 21.
    Godoi DRM, Perez J, Villullas HM (2009) Effects of alloyed and oxide phases on methanol oxidation of Pt-Ru/C nanocatalysts of the same particle size. J Phys Chem C 113(19):8518–8525.  https://doi.org/10.1021/jp8108804 CrossRefGoogle Scholar
  22. 22.
    Beyhan S, Uosaki K, Feliu JM, Herrero E (2013) Electrochemical and in situ FTIR studies of ethanol adsorption and oxidation on gold single crystal electrodes in alkaline media. J Electroanal Chem 707:89–94.  https://doi.org/10.1016/j.jelechem.2013.08.034 CrossRefGoogle Scholar
  23. 23.
    Sieben JM, Duarte MME (2012) Methanol, ethanol and ethylene glycol electro-oxidation at Pt and Pt–Ru catalysts electrodeposited over oxidized carbon nanotubes. Int J Hydrog Energy 37(13):9941–9947.  https://doi.org/10.1016/j.ijhydene.2012.01.173 CrossRefGoogle Scholar
  24. 24.
    González-Quijano D, Pech-Rodríguez WJ, Escalante-García JI, Vargas-Gutiérrez G, Rodríguez-Varela FJ (2014) Electrocatalysts for ethanol and ethylene glycol oxidation reactions. Part I: effects of the polyol synthesis conditions on the characteristics and catalytic activity of Pt–Sn/C anodes. Int J Hydrog Energy 39(29):16676–16685.  https://doi.org/10.1016/j.ijhydene.2014.04.125 CrossRefGoogle Scholar
  25. 25.
    Neto AO, da Silva SG, Buzzo GS, de Souza RFB, Assumpção MHMT, Spinacé EV, Silva JCM (2015) Ethanol electrooxidation on PdIr/C electrocatalysts in alkaline media: electrochemical and fuel cell studies. Ionics 21(2):487–495.  https://doi.org/10.1007/s11581-014-1201-5 CrossRefGoogle Scholar
  26. 26.
    Chen H, Xing Z, Zhu S, Zhang L, Chang Q, Huang J, Cai W-B, Kang N, Zhong C-J, Shao M (2016) Palladium modified gold nanoparticles as electrocatalysts for ethanol electrooxidation. J Power Sources 321:264–269.  https://doi.org/10.1016/j.jpowsour.2016.04.072 CrossRefGoogle Scholar
  27. 27.
    Cui G, Song S, Shen PK, Kowal A, Bianchini C (2009) First-principles considerations on catalytic activity of Pd toward ethanol oxidation. J Phys Chem C 113(35):15639–15642.  https://doi.org/10.1021/jp900924s CrossRefGoogle Scholar
  28. 28.
    Zhang F, Zhou D, Zhou M (2016) Ethanol electrooxidation on Pd/C nanoparticles in alkaline media. J Energy Chem 25(1):71–76.  https://doi.org/10.1016/j.jechem.2015.10.013 CrossRefGoogle Scholar
  29. 29.
    Nguyen ST, Ling Tan DS, Lee J-M, Chan SH, Wang JY, Wang X (2011) Tb promoted Pd/C catalysts for the electrooxidation of ethanol in alkaline media. Int J Hydrog Energy 36(16):9645–9652.  https://doi.org/10.1016/j.ijhydene.2011.05.049 CrossRefGoogle Scholar
  30. 30.
    Huang Y, Guo Y, Wang Y, Yao J (2014) Synthesis and performance of a novel PdCuPb/C nanocatalyst for ethanol electrooxidation in alkaline medium. Int J Hydrog Energy 39(9):4274–4281.  https://doi.org/10.1016/j.ijhydene.2013.12.176 CrossRefGoogle Scholar
  31. 31.
    Li G, Jiang L, Jiang Q, Wang S, Sun G (2011) Preparation and characterization of PdxAgy/C electrocatalysts for ethanol electrooxidation reaction in alkaline media. Electrochim Acta 56(22):7703–7711.  https://doi.org/10.1016/j.electacta.2011.06.036 CrossRefGoogle Scholar
  32. 32.
    Cai J, Huang Y, Guo Y (2014) PdTex/C nanocatalysts with high catalytic activity for ethanol electro-oxidation in alkaline medium. Appl Catal B Environ 150–151:230–237.  https://doi.org/10.1016/j.apcatb.2013.11.035 CrossRefGoogle Scholar
  33. 33.
    Peng C, Hu Y, Liu M, Zheng Y (2015) Hollow raspberry-like PdAg alloy nanospheres: high electrocatalytic activity for ethanol oxidation in alkaline media. J Power Sources 278:69–75.  https://doi.org/10.1016/j.jpowsour.2014.12.056 CrossRefGoogle Scholar
  34. 34.
    Wang P, Lin X, Yang B, Jin J-M, Hardacre C, Yu N-F, Sun S-G, Lin W-F (2015) Activity enhancement of tetrahexahedral Pd nanocrystals by bi decoration towards ethanol electrooxidation in alkaline media. Electrochim Acta 162:290–299.  https://doi.org/10.1016/j.electacta.2015.02.177 CrossRefGoogle Scholar
  35. 35.
    Mao H, Wang L, Zhu P, Xu Q, Li Q (2014) Carbon-supported PdSn–SnO2 catalyst for ethanol electro-oxidation in alkaline media. Int J Hydrog Energy 39(31):17583–17588.  https://doi.org/10.1016/j.ijhydene.2014.08.079 CrossRefGoogle Scholar
  36. 36.
    Liu C, Cai X, Wang J, Liu J, Riese A, Chen Z, Sun X, Wang S-D (2016) One-step synthesis of AuPd alloy nanoparticles on graphene as a stable catalyst for ethanol electro-oxidation. Int J Hydrog Energy 41(31):13476–13484.  https://doi.org/10.1016/j.ijhydene.2016.05.194 CrossRefGoogle Scholar
  37. 37.
    Ma L, Chu D, Chen R (2012) Comparison of ethanol electro-oxidation on Pt/C and Pd/C catalysts in alkaline media. Int J Hydrog Energy 37(15):11185–11194.  https://doi.org/10.1016/j.ijhydene.2012.04.132 CrossRefGoogle Scholar
  38. 38.
    Wang W, Yang Y, Liu Y, Wang F, Kang Y, Lei Z (2016) Dealloyed different atom ratios Pdx(FeCo)10–x nanoparticle: promising electrocatalyst towards ethylene glycol oxidation. Int J Hydrog Energy 41(1):300–306.  https://doi.org/10.1016/j.ijhydene.2015.10.101 CrossRefGoogle Scholar
  39. 39.
    Xu H, Yan B, Zhang K, Wang J, Li S, Wang C, Shiraishi Y, Du Y, Yang P (2017) Synthesis and characterization of core-shell PdAu convex nanospheres with enhanced electrocatalytic activity for ethylene glycol oxidation. J Alloys Compd 723:36–42.  https://doi.org/10.1016/j.jallcom.2017.06.230 CrossRefGoogle Scholar
  40. 40.
    Wang W, Kang Y, Yang Y, Liu Y, Chai D, Lei Z (2016) PdSn alloy supported on phenanthroline-functionalized carbon as highly active electrocatalysts for glycerol oxidation. Int J Hydrog Energy 41(2):1272–1280.  https://doi.org/10.1016/j.ijhydene.2015.11.017 CrossRefGoogle Scholar
  41. 41.
    Wang W, Dong Y, Xu L, Dong W, Niu X, Lei Z (2017) Combining bimetallic-alloy with selenium functionalized carbon to enhance electrocatalytic activity towards glucose oxidation. Electrochim Acta 244:16–25.  https://doi.org/10.1016/j.electacta.2017.05.078 CrossRefGoogle Scholar
  42. 42.
    Silva JCM, Piasentin RM, Spinacé EV, Neto AO, Baranova EA (2016) The effect of antimony-tin and indium-tin oxide supports on the catalytic activity of Pt nanoparticles for ammonia electro-oxidation. Mater Chem Phys 180:97–103.  https://doi.org/10.1016/j.matchemphys.2016.05.047 CrossRefGoogle Scholar
  43. 43.
    Antolini E (2016) Nitrogen-doped carbons by sustainable N- and C-containing natural resources as nonprecious catalysts and catalyst supports for low temperature fuel cells. Renew Sust Energ Rev 58:34–51.  https://doi.org/10.1016/j.rser.2015.12.330 CrossRefGoogle Scholar
  44. 44.
    Lee K-S, Park I-S, Cho Y-H, Jung D-S, Jung N, Park H-Y, Sung Y-E (2008) Electrocatalytic activity and stability of Pt supported on Sb-doped SnO2 nanoparticles for direct alcohol fuel cells. J Catal 258(1):143–152CrossRefGoogle Scholar
  45. 45.
    Chan K-Y, Ding J, Ren J, Cheng S, Tsang KY (2004) Supported mixed metal nanoparticles as electrocatalysts in low temperature fuel cells. J Mater Chem 14(4):505–516.  https://doi.org/10.1039/b314224h CrossRefGoogle Scholar
  46. 46.
    Park K-W, Sung Y-E, Han S, Yun Y, Hyeon T (2003) Origin of the enhanced catalytic activity of carbon nanocoil-supported PtRu alloy electrocatalysts. J Phys Chem B 108(3):939–944.  https://doi.org/10.1021/jp0368031 CrossRefGoogle Scholar
  47. 47.
    Park I-S, Park K-W, Choi J-H, Park CR, Sung Y-E (2007) Electrocatalytic enhancement of methanol oxidation by graphite nanofibers with a high loading of PtRu alloy nanoparticles. Carbon 45(1):28–33CrossRefGoogle Scholar
  48. 48.
    Daems N, Sheng X, Vankelecom IFJ, Pescarmona PP (2014) Metal-free doped carbon materials as electrocatalysts for the oxygen reduction reaction. J Mater Chem A 2(12):4085–4110.  https://doi.org/10.1039/C3TA14043A CrossRefGoogle Scholar
  49. 49.
    Daimon H, Kurobe Y (2006) Size reduction of PtRu catalyst particle deposited on carbon support by addition of non-metallic elements. Catal Today 111(3–4):182–187.  https://doi.org/10.1016/j.cattod.2005.10.023 CrossRefGoogle Scholar
  50. 50.
    Li J, Tian Q, Jiang S, Zhang Y, Wu Y (2016) Electrocatalytic performances of phosphorus doped carbon supported Pd towards formic acid oxidation. Electrochim Acta 213:21–30.  https://doi.org/10.1016/j.electacta.2016.06.041 CrossRefGoogle Scholar
  51. 51.
    Song P, Zhu L, Bo X, Wang A, Wang G, Guo L (2014) Pt nanoparticles incorporated into phosphorus-doped ordered mesoporous carbons: enhanced catalytic activity for methanol electrooxidation. Electrochim Acta 127:307–314.  https://doi.org/10.1016/j.electacta.2014.02.068 CrossRefGoogle Scholar
  52. 52.
    Choi CH, Park SH, Woo SI (2012) Phosphorus-nitrogen dual doped carbon as an effective catalyst for oxygen reduction reaction in acidic media: effects of the amount of P-doping on the physical and electrochemical properties of carbon. J Mater Chem 22(24):12107–12115.  https://doi.org/10.1039/c2jm31079a CrossRefGoogle Scholar
  53. 53.
    Wu J, Yang Z, Sun Q, Li X, Strasser P, Yang R (2014) Synthesis and electrocatalytic activity of phosphorus-doped carbon xerogel for oxygen reduction. Electrochim Acta 127:53–60.  https://doi.org/10.1016/j.electacta.2014.02.016 CrossRefGoogle Scholar
  54. 54.
    Antoniassi RM, Oliveira Neto A, Linardi M, Spinacé EV (2013) The effect of acetaldehyde and acetic acid on the direct ethanol fuel cell performance using PtSnO2/C electrocatalysts. Int J Hydrog Energy 38(27):12069–12077.  https://doi.org/10.1016/j.ijhydene.2013.06.139 CrossRefGoogle Scholar
  55. 55.
    Jiang Q, Jiang L, Qi J, Wang S, Sun G (2011) Experimental and density functional theory studies on PtPb/C bimetallic electrocatalysts for methanol electrooxidation reaction in alkaline media. Electrochim Acta 56(18):6431–6440.  https://doi.org/10.1016/j.electacta.2011.04.135 CrossRefGoogle Scholar
  56. 56.
    Silva JCM, Ntais S, Teixeira-Neto É, Spinacé EV, Cui X, Neto AO, Baranova EA (2017) Evaluation of carbon supported platinum–ruthenium nanoparticles for ammonia electro-oxidation: combined fuel cell and electrochemical approach. Int J Hydrog Energy 42(1):193–201.  https://doi.org/10.1016/j.ijhydene.2016.09.135 CrossRefGoogle Scholar
  57. 57.
    Assumpção MHMT, da Silva SG, de Souza RFB, Buzzo GS, Spinacé EV, Neto AO, Silva JCM (2014) Direct ammonia fuel cell performance using PtIr/C as anode electrocatalysts. Int J Hydrog Energy 39(10):5148–5152.  https://doi.org/10.1016/j.ijhydene.2014.01.053 CrossRefGoogle Scholar
  58. 58.
    Silva JCM, da Silva SG, De Souza RFB, Buzzo GS, Spinacé EV, Neto AO, Assumpção MHMT (2015) PtAu/C electrocatalysts as anodes for direct ammonia fuel cell. Appl Catal A Gen 490:133–138.  https://doi.org/10.1016/j.apcata.2014.11.015 CrossRefGoogle Scholar
  59. 59.
    Estejab A, Botte GG (2016) DFT calculations of ammonia oxidation reactions on bimetallic clusters of platinum and iridium. Comput Theor Chem 1091:31–40.  https://doi.org/10.1016/j.comptc.2016.06.030 CrossRefGoogle Scholar
  60. 60.
    Lomocso TL, Baranova EA (2011) Electrochemical oxidation of ammonia on carbon-supported bi-metallic PtM (M = Ir, Pd, SnOx) nanoparticles. Electrochim Acta 56(24):8551–8558.  https://doi.org/10.1016/j.electacta.2011.07.041 CrossRefGoogle Scholar
  61. 61.
    Lamb RN, Ngamsom B, Trimm DL, Gong B, Silveston PL, Praserthdam P (2004) Surface characterisation of Pd–Ag/Al2O3 catalysts for acetylene hydrogenation using an improved XPS procedure. Appl Catal A Gen 268(1–2):43–50.  https://doi.org/10.1016/j.apcata.2004.03.041 CrossRefGoogle Scholar
  62. 62.
    Batista J, Pintar A, Mandrino D, Jenko M, Martin V (2001) XPS and TPR examinations of γ-alumina-supported Pd-Cu catalysts. Appl Catal A Gen 206(1):113–124.  https://doi.org/10.1016/S0926-860X(00)00589-5 CrossRefGoogle Scholar
  63. 63.
    Hasik M, Bernasik A, Drelinkiewicz A, Kowalski K, Wenda E, Camra J (2002) XPS studies of nitrogen-containing conjugated polymers—palladium systems. Surf Sci 507–510:916–921.  https://doi.org/10.1016/S0039-6028(02)01372-9 CrossRefGoogle Scholar
  64. 64.
    Al-Hinai MN, Hassanien R, Wright NG, Horsfall AB, Houlton A, Horrocks BR (2013) Networks of DNA-templated palladium nanowires: structural and electrical characterisation and their use as hydrogen gas sensors. Faraday Discuss 164:71–91.  https://doi.org/10.1039/c3fd00017f CrossRefGoogle Scholar
  65. 65.
    Vankar VD, Vook RW (1983) EELS and AES study of epitaxially grown Pd(111) thin films. Surf Sci 131(2–3):463–474.  https://doi.org/10.1016/0039-6028(83)90291-1 CrossRefGoogle Scholar
  66. 66.
    Zhang L, Li F (2010) Helical nanocoiled and microcoiled carbon fibers as effective catalyst supports for electrooxidation of methanol. Electrochim Acta 55(22):6695–6702.  https://doi.org/10.1016/j.electacta.2010.06.002 CrossRefGoogle Scholar
  67. 67.
    Assumpção MHMT, Moraes A, De Souza RFB, Reis RM, Rocha RS, Gaubeur I, Calegaro ML, Hammer P, Lanza MRV, Santos MC (2013) Degradation of dipyrone via advanced oxidation processes using a cerium nanostructured electrocatalyst material. Appl Catal A Gen 462–463:256–261.  https://doi.org/10.1016/j.apcata.2013.04.008 CrossRefGoogle Scholar
  68. 68.
    dos Reis FVE, Antonin VS, Hammer P, Santos MC, Camargo PHC (2015) Carbon-supported TiO2–Au hybrids as catalysts for the electrogeneration of hydrogen peroxide: investigating the effect of TiO2 shape. J Catal 326:100–106.  https://doi.org/10.1016/j.jcat.2015.04.007 CrossRefGoogle Scholar
  69. 69.
    Antoniassi RM, Otubo L, Vaz JM, Oliveira Neto A, Spinacé EV (2016) Synthesis of Pt nanoparticles with preferential (1 0 0) orientation directly on the carbon support for direct ethanol fuel cell. J Catal 342:67–74.  https://doi.org/10.1016/j.jcat.2016.07.022 CrossRefGoogle Scholar
  70. 70.
    Oliveira Neto A, Brandalise M, Dias RR, Ayoub JMS, Silva AC, Penteado JC, Linardi M, Spinacé EV (2010) The performance of Pt nanoparticles supported on Sb2O5.SnO2, on carbon and on physical mixtures of Sb2O5.SnO2 and carbon for ethanol electro-oxidation. Int J Hydrog Energy 35(17):9177–9181.  https://doi.org/10.1016/j.ijhydene.2010.06.028 CrossRefGoogle Scholar
  71. 71.
    Monyoncho EA, Ntais S, Soares F, Woo TK, Baranova EA (2015) Synergetic effect of palladium–ruthenium nanostructures for ethanol electrooxidation in alkaline media. J Power Sources 287:139–149.  https://doi.org/10.1016/j.jpowsour.2015.03.186 CrossRefGoogle Scholar
  72. 72.
    Modibedi RM, Masombuka T, Mathe MK (2011) Carbon supported Pd–Sn and Pd–Ru–Sn nanocatalysts for ethanol electro-oxidation in alkaline medium. Int J Hydrog Energy 36(8):4664–4672.  https://doi.org/10.1016/j.ijhydene.2011.01.028 CrossRefGoogle Scholar
  73. 73.
    Assumpção MHMT, da Silva SG, De Souza RFB, Buzzo GS, Spinacé EV, Santos MC, Neto AO, Silva JCM (2014) Investigation of PdIr/C electrocatalysts as anode on the performance of direct ammonia fuel cell. J Power Sources 268:129–136.  https://doi.org/10.1016/j.jpowsour.2014.06.025 CrossRefGoogle Scholar
  74. 74.
    Zheng L, Xiong L, Liu Q, Han K, Liu W, Li Y, Tao K, Niu L, Yang S, Xia J (2011) Enhanced electrocatalytic activity for the oxidation of liquid fuels on PtSn nanoparticles. Electrochim Acta 56(27):9860–9867CrossRefGoogle Scholar
  75. 75.
    Leal da Silva E, Cuña A, Rita Ortega Vega M, Radtke C, Machado G, Tancredi N, de Fraga MC (2016) Influence of the support on PtSn electrocatalysts behavior: ethanol electro-oxidation performance and in-situ ATR-FTIRS studies. Appl Catal B Environ 193:170–179.  https://doi.org/10.1016/j.apcatb.2016.04.021 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Júlio César M. Silva
    • 1
  • Isabel C. de Freitas
    • 1
  • Almir O. Neto
    • 1
  • Estevam V. Spinacé
    • 1
  • Vilmaria A. Ribeiro
    • 1
  1. 1.Instituto de Pesquisas Energéticas e Nucleares, IPEN/CNEN-SPSão PauloBrazil

Personalised recommendations