Advertisement

Ionics

, Volume 24, Issue 4, pp 1007–1017 | Cite as

Electrical, electrochemical, and cycling studies of high-power layered Li(Li0.05Ni0.7 − x Mn0.25Co x )O2 (x = 0, 0.1, 0.3, 0.5, and 0.7) cathode materials for rechargeable lithium ion batteries

  • A. Nichelson
  • K. Karuppasamy
  • S. Thanikaikarasan
  • P. Anil Reddy
  • Pratap Kollu
  • S. Karthickprabhu
  • X. Sahaya Shajan
Original Paper
  • 168 Downloads

Abstract

The enriched lithium ion containing layered oxide cathode materials Li(Li0.05Ni0.7 − x Mn0.25Co x )O2 have been prepared by using facile sol–gel technique. The phase purity and crystalline nature of the layered oxide cathodes have determined by X-ray diffraction analysis. Surface morphology and elemental analysis have been carried out using scanning electron microscopy with energy dispersive analysis by X-rays and HR-TEM. Cyclic voltammetry analysis of the lithium-enriched cathode material shows a well redox performance at electrode–electrolytic interface. The Li(Li0.05Ni0.7 − x Mn0.25Co x )O2 cathode shows the most promising electrochemical properties under different conditions in which an appropriate rising of discharge capacity (i.e., 167 mAh g−1 at 0.5 C) and cycling stability (i.e., capacity retention: 83% at 1 C after 20 cycles, cutoff voltage 2.8–4.5 V) at ambient temperature. These unique properties allow the effective use of these cathode materials as positive electrodes for the development of rechargeable lithium ion batteries.

Graphical abstract

Keywords

Sol–gel technique Nanomaterials Li-ion batteries Cyclic voltammetry 

Notes

Acknowledgements

The author thankfully remember the help rendered by Dr. Hirankumar, C-SAR, PSNCET, Tirunelveli, for providing electrochemical workstation for the charge–discharge analysis. The author Dr. KKS gratefully acknowledges the Sophisticated Analytical Instrument Facility (SAIF), IIT Bombay, for providing HR-TEM and FE-SEM facilities and the Dongguk University-Seoul for their financial support.

References

  1. 1.
    Tarascon J-M, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414(6861):359–367CrossRefGoogle Scholar
  2. 2.
    Chen Z, Dahn J (2002) Effect of a ZrO2 coating on the structure and electrochemistry of LixCoO2 when cycled to 4.5 V. Electrochem Solid-State Lett 5(10):A213–A216CrossRefGoogle Scholar
  3. 3.
    Wang C-C, Manthiram A (2013) Influence of cationic substitutions on the first charge and reversible capacities of lithium-rich layered oxide cathodes. J Mater Chem A 1(35):10209–10217CrossRefGoogle Scholar
  4. 4.
    Gummow R, Liles D, Thackeray M (1993) Spinel versus layered structures for lithium cobalt oxide synthesised at 400 C. Mater Res Bull 28(3):235–246CrossRefGoogle Scholar
  5. 5.
    Gummow R, Thackeray M, David W, Hull S (1992) Structure and electrochemistry of lithium cobalt oxide synthesised at 400 C. Mater Res Bull 27(3):327–337CrossRefGoogle Scholar
  6. 6.
    Chen H, Qiu X, Zhu W, Hagenmuller P (2002) Synthesis and high rate properties of nanoparticled lithium cobalt oxides as the cathode material for lithium-ion battery. Electrochem Commun 4(6):488–491CrossRefGoogle Scholar
  7. 7.
    Nohma T, Kurokawa H, Uehara M, Takahashi M, Nishio K, Saito T (1995) Electrochemical characteristics of LiNiO2 and LiCoO2 as a positive material for lithium secondary batteries. J Power Sources 54(2):522–524CrossRefGoogle Scholar
  8. 8.
    Rossouw M, Liles D, Thackeray M (1993) Synthesis and structural characterization of a novel layered lithium manganese oxide, Li0.36Mn0.91O 2, and its lithiated derivative, Li1.09Mn0.91O 2. J Solid State Chem 104(2):464–466CrossRefGoogle Scholar
  9. 9.
    Whittingham MS (2004) Lithium batteries and cathode materials. Chem Rev 104(10):4271–4302CrossRefGoogle Scholar
  10. 10.
    Fergus JW (2010) Recent developments in cathode materials for lithium ion batteries. J Power Sources 195(4):939–954CrossRefGoogle Scholar
  11. 11.
    Nichelson A, Karthickprabhu S, Karuppasamy K, Hirankumar G, Sahaya Shajan X (2016) A brief review on integrated (layered and spinel) and olivine nanostructured cathode materials for lithium ion battery applications. Mater Focus 5(4):324–334CrossRefGoogle Scholar
  12. 12.
    Yu H, Zhou H (2012) Initial coulombic efficiency improvement of the Li1.2Mn0.567Ni0.166Co0.067 O2 lithium-rich material by ruthenium substitution for manganese. J Mater Chem 22(31):15507–15510CrossRefGoogle Scholar
  13. 13.
    Koyama Y, Tanaka I, Adachi H, Makimura Y, Ohzuku T (2003) Crystal and electronic structures of superstructural Li1 − x[Co1/3Ni1/3Mn1/3]O2 (0≤ x≤ 1). J Power Sources 119:644–648CrossRefGoogle Scholar
  14. 14.
    Shi S, Tu J, Tang Y, Liu X, Zhang Y, Wang X, Gu C (2013) Enhanced cycling stability of Li [Li0.2Mn0.54Ni0.13Co0.13] O2 by surface modification of MgO with melting impregnation method. Electrochim Acta 88:671–679CrossRefGoogle Scholar
  15. 15.
    Liu Q, Du K, Guo H, Z-d P, Y-b C, Hu G-r (2013) Structural and electrochemical properties of Co–Mn–Mg multi-doped nickel based cathode materials LiNi0.9Co0.1 − x[Mn1/2Mg1/2]xO2 for secondary lithium ion batteries. Electrochim Acta 90:350–357CrossRefGoogle Scholar
  16. 16.
    Cho T, Park S, Yoshio M, Hirai T, Hideshima Y (2005) Effect of synthesis condition on the structural and electrochemical properties of Li [Ni1/3Mn1/3Co1/3] O2 prepared by carbonate co-precipitation method. J Power Sources 142(1–2):306–312CrossRefGoogle Scholar
  17. 17.
    Zheng X, Li X, Zhang B, Wang Z, Guo H, Huang Z, Yan G, Wang D, Xu Y (2016) Enhanced electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode materials obtained by atomization co-precipitation method. Ceram Int 42(1):644–649CrossRefGoogle Scholar
  18. 18.
    Ying P-Z, Qiu X-Y, Zhang Q-Q, Zhuang Q-C (2015) Synthesis and electrochemical properties of Li-rich cathode material Li [NixLi(1/3 − 2x/3)Mn(2/3 − x/3)] O2 (x = 1/4, 1/3) for Li-ion battery. Ionics 21(3):657–665CrossRefGoogle Scholar
  19. 19.
    Suresh P, Rodrigues S, Shukla A, Vasan H, Munichandraiah N (2005) Synthesis of LiCo1 − xMnxO2 from a low-temperature route and characterization as cathode materials in Li-ion cells. Solid State Ionics 176(3):281–290CrossRefGoogle Scholar
  20. 20.
    Kang S-H, Belharouak I, Sun Y-K, Amine K (2005) Effect of fluorine on the electrochemical properties of layered Li (Ni0.5Mn0.5)O2 cathode materials. J Power Sources 146(1):650–653CrossRefGoogle Scholar
  21. 21.
    Du C, Zhang F, Ma C, Wu J, Tang Z, Zhang X, Qu D (2015) Synthesis and electrochemical properties of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material for lithium-ion battery. Ionics:1–10Google Scholar
  22. 22.
    Song MY, Mumm DR, Park CK, Park HR (2012) Cycling performance of LiNi1 − yMyO2 (M = Ni, Ga, Al and/or Ti) synthesized by wet milling and solid-state method. Met Mater Int 18(3):465–472CrossRefGoogle Scholar
  23. 23.
    Ju S, Koo H, Kim D, Hong S, Kang Y, Ha H, Kim K (2006) Submicron size Li (Ni1/3Co1/3Mn1/3)O2 particles prepared by spray pyrolysis from polymeric precursor solution. J Mater Sci Mater Electron 17(5):353–359CrossRefGoogle Scholar
  24. 24.
    Park KS, Cho MH, Jin SJ, Nahm KS, Hong Y (2004) Effect of Li ion in transition metal sites on electrochemical behavior of layered lithium manganese oxides solid solutions. Solid State Ionics 171(1):141–146CrossRefGoogle Scholar
  25. 25.
    Hwang B, Santhanam R, Liu D (2001) Characterization of nanoparticles of LiMn2O4 synthesized by citric acid sol–gel method. J Power Sources 97:443–446CrossRefGoogle Scholar
  26. 26.
    Kittel C, McEuen P (1976) Introduction to solid state physics, vol 8 Wiley New YorkGoogle Scholar
  27. 27.
    Velumani S, Narayandass SK, Mangalaraj D (1998) Structural characterization of hot wall deposited cadmium selenide thin films. Semicond Sci Technol 13(9):1016CrossRefGoogle Scholar
  28. 28.
    Laha S, Morán E, Sáez-Puche R, Alario-Franco M, dos Santos-Garcia A, Gonzalo E, Kuhn A, Natarajan S, Gopalakrishnan J, Garcia-Alvarado F (2013) Li3MRuO5 (M = Co, Ni), new lithium-rich layered oxides related to LiCoO2: promising electrochemical performance for possible application as cathode materials in lithium ion batteries. J Mater Chem A 1(36):10686–10692CrossRefGoogle Scholar
  29. 29.
    Hewston TA, Chamberland B (1987) A survey of first-row ternary oxides LiMO2 (M = Sc-Cu). J Phys Chem Solids 48(2):97–108CrossRefGoogle Scholar
  30. 30.
    Song L, Tang Z, Chen Y, Xiao Z, Li L, Zheng H, Li B, Liu Z (2016) Structural analysis of layered Li2MnO3–LiMO2 (M = Ni1/3Mn1/3Co1/3,Ni1/2Mn1/2) cathode materials by Rietveld refinement and first-principles calculations. Ceram Int 42(7):8537–8544CrossRefGoogle Scholar
  31. 31.
    Jeong SK, Song C-H, Nahm KS, Stephan AM (2006) Synthesis and electrochemical properties of Li [Li0.07Ni0.1Co0.6Mn0.23]O2 as a possible cathode material for lithium-ion batteries. Electrochim Acta 52(3):885–891CrossRefGoogle Scholar
  32. 32.
    Gao Y, Yakovleva M, Ebner W (1998) Novel LiNi1 − xTix/2Mgx/2O2 compounds as cathode materials for safer lithium-ion batteries. Electrochem Solid-State Lett 1(3):117–119CrossRefGoogle Scholar
  33. 33.
    Kim H-S, Kong M, Kim K, Kim I-J, Gu H-B (2007) Effect of carbon coating on LiNi1/3Mn1/3Co1/3O2 cathode material for lithium secondary batteries. J Power Sources 171(2):917–921CrossRefGoogle Scholar
  34. 34.
    Valanarasu S, Chandramohan R, Somasundaram R, Srikumar S (2011) Structural and electrochemical properties of Eu-doped LiCoO2. J Mater Sci Mater Electron 22(2):151–157CrossRefGoogle Scholar
  35. 35.
    Thanikaikarasan S, Mahalingam T, Sundaram K, Kathalingam A, Kim YD, Kim T (2009) Growth and characterization of electrosynthesized iron selenide thin films. Vacuum 83(7):1066–1072CrossRefGoogle Scholar
  36. 36.
    Prince E, Wilson AJC, Hahn T, Shmueli U (1999) International tables for crystallography. International Union of Crystallography,Google Scholar
  37. 37.
    Huang W, Frech R (1996) Vibrational spectroscopic and electrochemical studies of the low and high temperature phases of LiCo1 − xMxO2 (M= Ni or Ti). Solid State Ionics 86:395–400CrossRefGoogle Scholar
  38. 38.
    Julien C, Camacho-Lopez M, Mohan T, Chitra S, Kalyani P, Gopukumar S (2000) Combustion synthesis and characterization of substituted lithium cobalt oxides in lithium batteries. Solid State Ionics 135(1):241–248CrossRefGoogle Scholar
  39. 39.
    Riley LA, Van Atta S, Cavanagh AS, Yan Y, George SM, Liu P, Dillon AC, Lee S-H (2011) Electrochemical effects of ALD surface modification on combustion synthesized LiNi1/3Mn1/3 Co1/3O2 as a layered-cathode material. J Power Sources 196(6):3317–3324CrossRefGoogle Scholar
  40. 40.
    Baddour-Hadjean R, Pereira-Ramos J-P (2009) Raman microspectrometry applied to the study of electrode materials for lithium batteries. Chem Rev 110(3):1278–1319CrossRefGoogle Scholar
  41. 41.
    Jin X, Xu Q, Yuan X, Zhou L, Xia Y (2013) Synthesis, characterization and electrochemical performance of Li [Li0.2Mn0.54Ni0.13Co0.13]O2 cathode materials for lithium-ion batteries. Electrochim Acta 114:605–610CrossRefGoogle Scholar
  42. 42.
    Ghosh P, Mahanty S, Basu RN (2008) Effect of silver addition on the properties of combustion synthesized nanocrystalline LiCoO2. Mater Chem Phys 110(2):406–410CrossRefGoogle Scholar
  43. 43.
    Menetrier M, Rougier A, Delmas C (1994) Cobalt segregation in the LiNi1 − yCoyO2 solid solution: a preliminary 7Li NMR study. Solid State Commun 90(7):439–442CrossRefGoogle Scholar
  44. 44.
    Marichal C, Hirschinger J, Granger P, Menetrier M, Rougier A, Delmas C (1995) 6Li and 7Li NMR in the LiNi1 − yCoyO2 solid solution (0. ltoreq. y. ltoreq. 1). Inorg Chem 34(7):1773–1778CrossRefGoogle Scholar
  45. 45.
    Rao BN, Venkateswarlu M, Satyanarayana N (2014) Electrical and dielectric properties of rare earth oxides coated LiCoO2 particles. Ionics 20(2):175–181CrossRefGoogle Scholar
  46. 46.
    Khatun F, Gafur M, Ali M, Islam M, Sarker M (2014) Impact of lithium composition on structural, electronic and optical properties of lithium cobaltite prepared by solid-state reaction. J Sci Res 6(2):217–231CrossRefGoogle Scholar
  47. 47.
    Shaju K, Subba Rao G, Chowdari B (2002) Performance of layered Li(Ni1/3Co1/3Mn1/3)O2 as cathode for Li-ion batteries. Electrochim Acta 48(2):145–151CrossRefGoogle Scholar
  48. 48.
    Hsieh C-T, Mo C-Y, Chen Y-F, Chung Y-J (2013) Chemical-wet synthesis and electrochemistry of LiNi1/3Co1/3Mn1/3O2 cathode materials for Li-ion batteries. Electrochim Acta 106:525–533CrossRefGoogle Scholar
  49. 49.
    Spotnitz R (2003) Simulation of capacity fade in lithium-ion batteries. J Power Sources 113(1):72–80CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • A. Nichelson
    • 1
    • 2
  • K. Karuppasamy
    • 3
  • S. Thanikaikarasan
    • 1
  • P. Anil Reddy
    • 4
  • Pratap Kollu
    • 5
    • 6
  • S. Karthickprabhu
    • 7
  • X. Sahaya Shajan
    • 1
  1. 1.Centre for Scientific and Applied Research, PSN College of Engineering and TechnologyTirunelveliIndia
  2. 2.St. Mother Theresa Engineering CollegeThoothukudiIndia
  3. 3.Division of Electronics and Electrical EngineeringDongguk University-SeoulSeoulSouth Korea
  4. 4.Department of Metallurgical Engineering and Materials ScienceIndian Institute of Technology BombayMumbaiIndia
  5. 5.CASEST, School of PhysicsUniversity of HyderabadHyderabadIndia
  6. 6.Department of PhysicsCavendish Laboratory, University of CambridgeCambridgeUK
  7. 7.K.Ramakrishnan College of TechnologyTrichyIndia

Personalised recommendations