Skip to main content
Log in

LiPON as a protective layer on graphite anode to extend the storage life of Li-ion battery at elevated temperature

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A thin-film lithium phosphorous oxynitride (LiPON) layer on the top of a graphite anode is synthesized via radio frequency magnetron sputtering, whereas the thickness of the film is about 0.3 ~ 1.3 μm. The field emission scanning electron microscopy on the samples confirms the even-coated layer on the anode, while the thickness of layer is reconfirmed by weighing the area density of sputtered anode. The storage experiment at elevated temperature of LiNi0.8Co0.15Al0.05O2/graphite cells with and without a LiPON layer on anode reveals that the LiPON layer on the anode would restrain the capacity loss when compared with bare anode. Moreover, it is found that a thicker LiPON layer on anode would provide better capacity retention during storage aging. Meanwhile, the electrochemical impedance spectroscopy is recorded during aging and its equivalent circuit simulation is proposed. Also, the anode surface morphology with and without a LiPON layer is observed before and after aging. Based on these investigations and analysis, we conclude that the LiPON layer on the top of the anode would act as a protective layer and improve the capacity retention during storage aging at elevated temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Thomas EV, Bloom I, Christophersen JP, Battaglia VS (2012) Ratebased degradation modeling of lithium-ion cells. J Power Sources 206:378–382

    Article  CAS  Google Scholar 

  2. Christophersen JP, Bloom I, Thomas E, Battaglia V (2012) Battery calendar life estimate manual modeling and simulation. INL/EXT-08015136

  3. Agubra V, Fergus J (2013) Lithium ion battery anode aging mechanisms. Materials 6:1310–1325

    Article  CAS  Google Scholar 

  4. Barré A, Deguilhem B, Grolleau S, Gérard M, Suard F, Riu D (2013) A review on lithium-ion battery ageing mechanisms and estimations for automotive applications. J Power Sources 241:680–689

    Article  Google Scholar 

  5. Sarre G, Blanchard P, Broussely M (2004) Aging of lithium-ion batteries. J Power Sources 127:65–71

    Article  CAS  Google Scholar 

  6. Schlasza C, Ostertag P, Chrenko D, Kriesten R (2014) Review on the aging mechanisms in Li-ion batteries for electric vehicles based on the FMEA method. Transportation Electrification Conference and Expo 1-6

  7. Vetter J, Novák P, Wagner MR, Veit C, Möller KC, Besenhard JO, Winter M, Wohlfahrt-Mehrens M, Vogler C, Hammouche A (2005) Ageing mechanisms in lithium-ion batteries. J Power Sources 147:269–281

    Article  CAS  Google Scholar 

  8. Waldmann T, Wilka M, Kasper M, Fleischhammer M, Wohlfahrt- Mehrens M (2014) Temperature dependent ageing mechanisms in Lithium-ion batteries – a post-mortem study. J Power Sources 262:129–135

  9. Broussely M, Herreyre S, Biensan P, Kasztejna P, Nechev K, Staniewicz RJ (2001) Aging mechanism in Li ion cells and calendar life predictions. J Power Sources 97-98:13–21

    Article  CAS  Google Scholar 

  10. Roberts M, Biendicho JJ, Hull S, Beran P, Gustafsson T, Svensson G, Edström K (2013) Design of a new lithium ion battery test cell for in-situ neutron diffraction measurements. J Power Sources 226:249–255

    Article  CAS  Google Scholar 

  11. Prasad GK, Rahn CD (2013) Model based identification of aging parameters in lithium ion batteries. J Power Sources 232:79–85

    Article  CAS  Google Scholar 

  12. Yoshida T, Takahashi M, Morikawa S, Ihara C, Katsukawa H, Shiratsuchi T, Yamaki JI (2006) Degradation mechanism and life prediction of lithium-ion batteries. J Jpn Soc Nat Disaster Sci 153:A576–A582

    CAS  Google Scholar 

  13. Xu K (2014) Electrolytes and interphases in li-ion batteries and beyond. Chem Rev 114:11503

    Article  CAS  Google Scholar 

  14. Verma P, Maire P, Novák P (2010) A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochim Acta 55:6332–6341

    Article  CAS  Google Scholar 

  15. An SJ, Li J, Danie C, Mohanty D, Nagpure S, Wood DL (2016) The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase(SEI) and its relationship to formation cycling. Carbon 105:52–76

    Article  CAS  Google Scholar 

  16. Li NW, Yin YX, Yang CP, Guo YG (2016) An artificial solid electrolyte interphase layer for stable lithium metal anodes. Adv Mater 28:1853

    Article  CAS  Google Scholar 

  17. Li J, Dudney NJ, Nanda J, Liang C (2014) Artificial solid electrolyte interphase to address the electrochemical degradation of silicon electrodes. Acs Appl Mater Int 6:10083–10088

    Article  CAS  Google Scholar 

  18. Lin YX, Liu Z, Leung K, Chen LQ, Lu P, Qi Y (2016) Connecting the irreversible capacity loss in Li-ion batteries with the electronic insulating properties of solid electrolyte interphase (SEI) components. J Power Sources 309:221–230

    Article  CAS  Google Scholar 

  19. Wu NL, Weng YT, Li FS, Yang NH, Kuo CL, Li DS (2015) Polymeric artificial solid/electrolyte interphases for Li-ion batteries. Prog Nat Sci Mater Int 25:563–571

    Article  CAS  Google Scholar 

  20. Van-Jodin LL, Ducroquet F, Sabary F, Chevalier I (2013) Dielectric properties, conductivity and Li+ ion motion in LiPON thin films. Solid State Ionics 253:151–156

    Article  Google Scholar 

  21. Senevirathne K, Day CS, Gross MD, Lachgar A, Holzwarth NW (2013) A new crystalline LiPON electrolyte: synthesis, properties, and electronic structure. Solid State Ionics 233:95–101

    Article  CAS  Google Scholar 

  22. Dudney NJ (2000) Addition of a thin-film inorganic solid electrolyte (Lipon) as a protective film in lithium batteries with a liquid electrolyte. J Power Sources 89:176–179

    Article  CAS  Google Scholar 

  23. Jouybari YH, Berkemeier F (2016) Enhancing silicon performance via LiPON coating: a prospective anode for lithium ion batteries. Electrochim Acta 217:171–180

    Article  Google Scholar 

  24. Kim Y, Veith GM, Nanda J, Unocic R, Chi M, Dudney NJ (2011) High voltage stability of LiCoO2 particles with a nano-scale Lipon coating. Electrochim Acta 56:6573–6580

    Article  CAS  Google Scholar 

  25. Nimisha CS, Rao KY, Venkatesh G, Rao GM, Munichandraiah N (2011) Sputter deposited LiPON thin films from powder target as electrolyte for thin film battery applications. Thin Solid Films 519:3401–3406

    Article  CAS  Google Scholar 

  26. Bridges CA, Sun XG, Zhao J, Paranthaman MP, Dai S (2012) In situ observation of solid electrolyte interphase formation in ordered mesoporous hard carbon by small-angle neutron scattering. J Phys Chem C 116:7701–7711

    Article  CAS  Google Scholar 

  27. Liu L, Park J, Lin X, Sastry AM, Lu W (2014) A thermalelectrochemical model that gives spatial-dependent growth of solid electrolyte interphase in a Li-ion battery. J Power Sources 268:482–490

    Article  CAS  Google Scholar 

  28. Reichert MDA, Rösmann A, Janssen P, Bremes HG, Sauer DU, Passerini S, Winter M (2013) Influence of relaxation time on the lifetime of commercail lithium-ion cells. J Power Sources 239:45–53

    Article  CAS  Google Scholar 

  29. Zhang SS, Xu K, Jow TR (2004) Electrochemical impedance study on the low temperature of Li-ion batteries. Electrochim Acta 49:1057–1061

    Article  CAS  Google Scholar 

  30. Prada E, Domenico DD, Creff Y, Bernard J, Sauvant-Moynot V, Huet F (2013) A simplified electrochemical and thermal aging model of LiFePO4-graphite Li-ion batteries: power and capacity fade simulations. J Electrochem Soc 160:A616–A628

    Article  CAS  Google Scholar 

  31. Zhang D, Haran BS, Durairajan A, White RE, Podrazhansky Y, Popov BN (2000) Studies on capacity fade of lithium-ion batteries. J Power Sources 91:122–129

    Article  CAS  Google Scholar 

  32. Bodenes L, Naturel R, Martinez H, Dedryvère R, Menetrier M, Croguennec L, Pérès JP, Tessier C, Fischer F (2013) Lithium secondary batteries working at very high temperature: capacity fade and understanding of aging mechanisms. J Power Sources 236:265–275

    Article  CAS  Google Scholar 

  33. Röder P, Stiaszny B, Ziegler JC, Baba N, Lagaly P, Wiemhöfer HD (2014) The impact of calendar aging on the thermal stability of a LiMn2O4– Li(Ni1/3Mn1/3Co1/3)O2/graphite lithium-ion cell. J Power Sources 268:315–325

    Article  Google Scholar 

  34. Agubra VA, Fergus JW (2014) The formation and stability of the solid electrolyte interface on the graphite anode. J Power Sources 268:153–162

    Article  CAS  Google Scholar 

  35. Xu K, Lee U, Zhang SS, Jow TR (2004) Graphite/electrolyte interface formed in LiBOB-based electrolytes, II potential dependence of surface chemistry on graphitic anodes. J Electrochem Soc 151:A2106–A2112

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Research Project of National University of Defense Technology (ZDYYJCYJ 20140701). Meanwhile, we would gratefully like to thank the Zhong Fang Gai De Vacuum Technology Co. Ltd., Beijing, China, for providing us the rf magnetron sputtering equipment.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Liu or Chunman Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Xie, K., Pan, Y. et al. LiPON as a protective layer on graphite anode to extend the storage life of Li-ion battery at elevated temperature. Ionics 24, 723–734 (2018). https://doi.org/10.1007/s11581-017-2250-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2250-3

Keywords

Navigation