, Volume 23, Issue 9, pp 2521–2527 | Cite as

Garnet-type oxide electrolyte with novel porous-dense bilayer configuration for rechargeable all-solid-state lithium batteries

  • Yaoyu RenEmail author
  • Ting Liu
  • Yang Shen
  • Yuanhua Lin
  • Ce-Wen NanEmail author
Short Communication


Using Al-contained Li6.75La3Zr1.75Ta0.25O12 (LLZTO) with high conductivity as electrolyte, we design and prepare a kind of monolithic-sintered LLZTO pellets with a novel porous-dense bilayer configuration, which integrates a dense LLZTO layer together with a porous LLZTO layer. Such bilayered configuration LLZTO is tested for all-solid-state lithium batteries. LiCoO2 as cathode active material is infiltrated into the porous electrolyte layer by sol-gel method, and lithium metal is used as anode and its interfacial contact with the dense electrolyte layer is optimized by tuning the surface roughness of the electrolyte. Moreover, a prototype all-solid-state lithium-oxygen battery is also assembled by introducing carbon and silver into the porous electrolyte layer as electronic conductive component in the air electrode and by contacting lithium metal with the dense electrolyte layer as anode. The cycle performances of both prototype batteries are tested to evaluate the function and limitations of the bilayer-structured oxide electrolyte.


Bilayer Garnet-type solid electrolyte Solid-state lithium batteries Lithium-oxygen batteries 



This work was supported by the NSF of China (grant no. 51532002 and 51625202).

Supplementary material

11581_2017_2224_MOESM1_ESM.pdf (222 kb)
ESM 1 (PDF 221 kb).


  1. 1.
    Ren Y, Chen K, Chen R, Liu T, Zhang Y, Nan C-W (2015) Oxide electrolytes for lithium batteries. J Am Ceram Soc 98(12):3603–3623. doi: 10.1111/jace.13844 CrossRefGoogle Scholar
  2. 2.
    Yang P, Tarascon J-M (2012) Towards systems materials engineering. Nat Mater 11(7):560–563CrossRefGoogle Scholar
  3. 3.
    Kato Y, Hori S, Saito T, Suzuki K, Hirayama M, Mitsui A, Yonemura M, Iba H, Kanno R (2016) High-power all-solid-state batteries using sulfide superionic conductors. Nature Energy 1:16030. doi: 10.1038/nenergy.2016.30 CrossRefGoogle Scholar
  4. 4.
    Oh G, Hirayama M, Kwon O, Suzuki K, Kanno R (2016) Bulk-type all solid-state batteries with 5 V class LiNi0.5Mn1.5O4 cathode and Li10GeP2S12 solid electrolyte. Chem Mater 28(8):2634–2640. doi: 10.1021/acs.chemmater.5b04940 CrossRefGoogle Scholar
  5. 5.
    Janek J, Zeier WG (2016) A solid future for battery development. Nature Energy 1:16141. doi: 10.1038/nenergy.2016.141 CrossRefGoogle Scholar
  6. 6.
    Ohta S, Komagata S, Seki J, Saeki T, Morishita S, Asaoka T (2013) All-solid-state lithium ion battery using garnet-type oxide and Li3BO3 solid electrolytes fabricated by screen-printing. J Power Sources 238 (0):53–56. doi: 10.1016/j.jpowsour.2013.02.073
  7. 7.
    Ohta S, Seki J, Yagi Y, Kihira Y, Tani T, Asaoka T (2014) Co-sinterable lithium garnet-type oxide electrolyte with cathode for all-solid-state lithium ion battery. J Power Sources 265 (0):40–44. doi: 10.1016/j.jpowsour.2014.04.065
  8. 8.
    Liu T, Ren Y, Shen Y, Zhao S-X, Lin Y, Nan C-W (2016) Achieving high capacity in bulk-type solid-state lithium ion battery based on Li6.75La3Zr1.75Ta0.25O12 electrolyte: interfacial resistance. J Power Sources 324:349–357. doi: 10.1016/j.jpowsour.2016.05.111 CrossRefGoogle Scholar
  9. 9.
    Aboulaich A, Bouchet R, Delaizir G, Seznec V, Tortet L, Morcrette M, Rozier P, Tarascon J-M, Viallet V, Dolle M (2011) A new approach to develop safe all-inorganic monolithic Li-ion batteries. Adv Energy Mater 1(2):179–183. doi: 10.1002/aenm.201000050 CrossRefGoogle Scholar
  10. 10.
    Baek S-W, Lee J-M, Kim TY, Song M-S, Park Y (2014) Garnet related lithium ion conductor processed by spark plasma sintering for all solid state batteries. J Power Sources 249 (0):197–206. doi: 10.1016/j.jpowsour.2013.10.089
  11. 11.
    Kotobuki M, Munakata H, Kanamura K (2011) Fabrication of all-solid-state rechargeable lithium-ion battery using mille-feuille structure of Li0.35La0.55TiO3. J Power Sources 196(16):6947–6950. doi: 10.1016/j.jpowsour.2010.11.139 CrossRefGoogle Scholar
  12. 12.
    Kotobuki M, Suzuki Y, Kanamura K, Sato Y, Yamamoto K, Yoshida T (2011) A novel structure of ceramics electrolyte for future lithium battery. J Power Sources 196(22):9815–9819. doi: 10.1016/j.jpowsour.2011.07.005 CrossRefGoogle Scholar
  13. 13.
    Ren Y, Deng H, Chen R, Shen Y, Lin Y, Nan C-W (2015) Effects of Li source on microstructure and ionic conductivity of Al-contained Li6.75La3Zr1.75Ta0.25O12 ceramics. J Eur Ceram Soc 35(2):561–572. doi: 10.1016/j.jeurceramsoc.2014.09.007 CrossRefGoogle Scholar
  14. 14.
    Murugan R, Thangadurai V, Weppner W (2007) Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew Chem Int Ed 46(41):7778–7781. doi: 10.1002/anie.200701144 CrossRefGoogle Scholar
  15. 15.
    Li Y, Han J-T, Wang C-A, Xie H, Goodenough JB (2012) Optimizing Li+ conductivity in a garnet framework. J Mater Chem 22(30):15357–15361. doi: 10.1039/C2JM31413D CrossRefGoogle Scholar
  16. 16.
    Vohs JM, Gorte RJ (2009) High-performance SOFC cathodes prepared by infiltration. Adv Mater 21(9):943–956. doi: 10.1002/adma.200802428 CrossRefGoogle Scholar
  17. 17.
    Ren Y, Liu T, Shen Y, Lin Y, Nan C-W (2016) Chemical compatibility between garnet-like solid state electrolyte Li6.75La3Zr1.75Ta0.25O12 and major commercial lithium battery cathode materials. J Mater 2(3):256–264. doi: 10.1016/j.jmat.2016.04.003 Google Scholar
  18. 18.
    Kang SG, Kang SY, Ryu KS, Chang SH (1999) Electrochemical and structural properties of HT-LiCoO2 and LT-LiCoO2 prepared by the citrate sol-gel method. Solid State Ionics 120(1–4):155–161. doi: 10.1016/S0167-2738(98)00559-1 CrossRefGoogle Scholar
  19. 19.
    Kim KH, Iriyama Y, Yamamoto K, Kumazaki S, Asaka T, Tanabe K, Fisher CAJ, Hirayama T, Murugan R, Ogumi Z (2011) Characterization of the interface between LiCoO2 and Li7La3Zr2O12 in an all-solid-state rechargeable lithium battery. J Power Sources 196(2):764–767. doi: 10.1016/j.jpowsour.2010.07.073 CrossRefGoogle Scholar
  20. 20.
    Kato T, Hamanaka T, Yamamoto K, Hirayama T, Sagane F, Motoyama M, Iriyama Y (2014) In-situ Li7La3Zr2O12/LiCoO2 interface modification for advanced all-solid-state battery. J Power Sources 260 (0):292–298. doi: 10.1016/j.jpowsour.2014.02.102
  21. 21.
    Cheng L, Crumlin EJ, Chen W, Qiao R, Hou H, Franz Lux S, Zorba V, Russo R, Kostecki R, Liu Z, Persson K, Yang W, Cabana J, Richardson T, Chen G, Doeff M (2014) The origin of high electrolyte-electrode interfacial resistances in lithium cells containing garnet type solid electrolytes. Phys Chem Chem Phys 16(34):18294–18300. doi: 10.1039/C4CP02921F CrossRefGoogle Scholar
  22. 22.
    Garcia B, Farcy J, Pereira-Ramos JP, Perichon J, Baffier N (1995) Low-temperature cobalt oxide as rechargeable cathodic material for lithium batteries. J Power Sources 54(2):373–377. doi: 10.1016/0378-7753(94)02105-C CrossRefGoogle Scholar
  23. 23.
    Kotobuki M, Koishi M (2014) Preparation of Li7La3Zr2O12 solid electrolyte via a sol–gel method. Ceram Int 40(3):5043–5047. doi: 10.1016/j.ceramint.2013.09.009 CrossRefGoogle Scholar
  24. 24.
    Djenadic R, Botros M, Benel C, Clemens O, Indris S, Choudhary A, Bergfeldt T, Hahn H (2014) Nebulized spray pyrolysis of Al-doped Li7La3Zr2O12 solid electrolyte for battery applications. Solid State Ionics 263:49–56. doi: 10.1016/j.ssi.2014.05.007 CrossRefGoogle Scholar
  25. 25.
    Lu J, Li L, Park J-B, Sun Y-K, Wu F, Amine K (2014) Aprotic and aqueous Li–O2 batteries. Chem Rev 114(11):5611–5640. doi: 10.1021/cr400573b CrossRefGoogle Scholar
  26. 26.
    Laoire CO, Mukerjee S, Plichta EJ, Hendrickson MA, Abraham KM (2011) Rechargeable lithium/TEGDME-LiPF6/O2 battery. J Electrochem Soc 158(3):A302. doi: 10.1149/1.3531981 CrossRefGoogle Scholar
  27. 27.
    Laoire CO, Mukerjee S, Abraham KM, Plichta EJ, Hendrickson MA (2010) Influence of nonaqueous solvents on the electrochemistry of oxygen in the rechargeable lithium−air battery. J Phys Chem C 114(19):9178–9186. doi: 10.1021/jp102019y CrossRefGoogle Scholar
  28. 28.
    McCloskey BD, Bethune DS, Shelby RM, Girishkumar G, Luntz AC (2011) Solvents’ critical role in nonaqueous lithium-oxygen battery electrochemistry. J Phys Chem Lett 2(10):1161–1166. doi: 10.1021/jz200352v CrossRefGoogle Scholar
  29. 29.
    Luo W, Gong Y, Zhu Y, Fu KK, Dai J, Lacey SD, Wang C, Liu B, Han X, Mo Y (2016) Transition from superlithiophobicity to superlithiophilicity of garnet solid-state electrolyte. J Am Chem Soc 138(37):12258–12262CrossRefGoogle Scholar
  30. 30.
    Han X, Gong Y, Fu K, He X, Hitz GT, Dai J, Pearse A, Liu B, Wang H, Rubloff G, Mo Y, Thangadurai V, Wachsman ED, Hu L (2017) Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat Mater 16(5):572–579. doi: 10.1038/nmat4821 CrossRefGoogle Scholar
  31. 31.
    Ren Y, Shen Y, Lin Y, Nan C-W (2015) Direct observation of lithium dendrites inside garnet-type lithium-ion solid electrolyte. Electrochem Commun 57:27–30. doi: 10.1016/j.elecom.2015.05.001 CrossRefGoogle Scholar
  32. 32.
    Tsai C-L, Roddatis V, Chandran CV, Ma Q, Uhlenbruck S, Bram M, Heitjans P, Guillon O (2016) Li7La3Zr2O12 interface modification for Li dendrite prevention. ACS Appl Mater Interfaces 8(16):10617–10626CrossRefGoogle Scholar
  33. 33.
    Aguesse F, Manalastas W, Buannic L, Lopez del Amo JM, Singh G, Llordes A, Kilner JA (2017) Investigating the dendritic growth during full cell cycling of garnet electrolyte in direct contact with Li metal. ACS Applied Materials & InterfacesGoogle Scholar
  34. 34.
    Buschmann H, Berendts S, Mogwitz B, Janek J (2012) Lithium metal electrode kinetics and ionic conductivity of the solid lithium ion conductors “Li7La3Zr2O12” and Li7−xLa3Zr2−xTaxO12 with garnet-type structure. J Power Sources 206 (0):236–244. doi: 10.1016/j.jpowsour.2012.01.094
  35. 35.
    El Shinawi H, Janek J (2013) Stabilization of cubic lithium-stuffed garnets of the type “Li7La3Zr2O12” by addition of gallium. J Power Sources 225 (0):13–19. doi: 10.1016/j.jpowsour.2012.09.111
  36. 36.
    Sudo R, Nakata Y, Ishiguro K, Matsui M, Hirano A, Takeda Y, Yamamoto O, Imanishi N (2014) Interface behavior between garnet-type lithium-conducting solid electrolyte and lithium metal. Solid State Ionics 262 (0):151–154. doi: 10.1016/j.ssi.2013.09.024
  37. 37.
    Cheng L, Park JS, Hou H, Zorba V, Chen G, Richardson T, Cabana J, Russo R, Doeff M (2014) Effect of microstructure and surface impurity segregation on the electrical and electrochemical properties of dense Al-substituted Li7La3Zr2O12. J Mater Chem A 2(1):172–181. doi: 10.1039/c3ta13999a CrossRefGoogle Scholar
  38. 38.
    Cheng L, Crumlin EJ, Chen W, Qiao R, Hou H, Lux SF, Zorba V, Russo R, Kostecki R, Liu Z, Persson K, Yang W, Cabana J, Richardson T, Chen G, Doeff M (2014) The origin of high electrolyte-electrode interfacial resistances in lithium cells containing garnet type solid electrolytes. Phys Chem Chem Phys 16(34):18294–18300. doi: 10.1039/c4cp02921f CrossRefGoogle Scholar
  39. 39.
    Cheng L, Chen W, Kunz M, Persson K, Tamura N, Chen G, Doeff M (2015) Effect of surface microstructure on electrochemical performance of garnet solid electrolytes. ACS Appl Mater Interfaces 7(3):2073–2081. doi: 10.1021/am508111r CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.School of Materials Science and Engineering, State Key Lab of New Ceramics and Fine ProcessingTsinghua UniversityBeijingPeople’s Republic of China
  2. 2.Energy Research Center & Department of Materials Science and EngineeringUniversity of MarylandCollege ParkUSA

Personalised recommendations