, Volume 23, Issue 12, pp 3517–3531 | Cite as

Photocatalytic properties of Ta-doped TiO2

  • Mohammad A. Alim
  • Tadeusz Bak
  • Armand J. Atanacio
  • Mihail Ionescu
  • Brendan Kennedy
  • William S. Price
  • Johan Du Plessis
  • Maryam Pourmahdavi
  • Meifang Zhou
  • Allan Torres
  • Janusz NowotnyEmail author
Original Paper


This work reports the effect of tantalum (0.1–1 at.% Ta) on the photocatalytic performance of TiO2 annealed at 1373 and 1673 K in air. It was shown that addition of tantalum resulted in an increase of photocatalytic activity of TiO2 for the specimens annealed at 1373 K. However, the activity of the Ta-doped TiO2 specimens annealed at 1673 K was reduced. The effect of tantalum on the photocatalytic performance at 1373 K was rationalised in terms of an increased concentration of titanium vacancies acting as the active surface sites, and increased charge transport. In this work, it was also shown that the band gap reduction due to tantalum incorporation had little effect on photocatalytic performance. The effect of annealing at 1673 K on photocatalytic activity was explained in terms of reduced surface segregation of tantalum.


Defect chemistry Water oxidation Titanium dioxide 



The authors would like to thank AINSE Ltd. for providing financial assistance (Award—PGRA) to enable work on the surface characterisation of the specimens.


  1. 1.
    Linsebigler AL, Lu G, Yates JT (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem rev 95:735–758CrossRefGoogle Scholar
  2. 2.
    Schneider J, Matsuoka M, Takeuchi M, Zhang J, Horiuchi Y, Anpo M, Bahnemann DW (2014) Understanding TiO2 photocatalysis: mechanisms and materials. Chem rev 114:9919–9986CrossRefGoogle Scholar
  3. 3.
    Ashokkumar M, Maruthamuthu P (1989) Preparation and characterization of doped WO3 photocatalyst powders. J Mater Sci 24:2135–2139CrossRefGoogle Scholar
  4. 4.
    Chakrabarti S, Dutta BK (2004) Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst. J Hazard Mater 112:269–278CrossRefGoogle Scholar
  5. 5.
    Jang JS, Lee J, Ye H, Fan F-RF, Bard AJ (2009) Rapid screening of effective dopants for Fe2O3 photocatalysts with scanning electrochemical microscopy and investigation of their photoelectrochemical properties. J Phys Chem C 113:6719–6724CrossRefGoogle Scholar
  6. 6.
    Fujishima A (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38CrossRefGoogle Scholar
  7. 7.
    Huang S-Y, Ganesan P, Popov BN (2010) Electrocatalytic activity and stability of niobium-doped titanium oxide supported platinum catalyst for polymer electrolyte membrane fuel cells. Appl Catal B Environ 96:224–231CrossRefGoogle Scholar
  8. 8.
    Nakata K, Fujishima A (2012) TiO2 photocatalysis: design and applications. J Photochem Photobiol C: Photochem rev 13:169–189CrossRefGoogle Scholar
  9. 9.
    Ohno T, Mitsui T, Matsumura M (2003) Photocatalytic activity of S-doped TiO2 photocatalyst under visible light. Chem Lett 32:364–365CrossRefGoogle Scholar
  10. 10.
    Štengl V, Houšková V, Bakardjieva S, Murafa N, Bezdička P (2010) Niobium and tantalum doped titania particles. J Mater re 25:2015–2024CrossRefGoogle Scholar
  11. 11.
    Emeline AV, Furubayashi Y, Zhang X, Jin M, Murakami T, Fujishima A (2005) Photoelectrochemical behavior of Nb-doped TiO2 electrodes. J Phys Chem B 109:24441–24444CrossRefGoogle Scholar
  12. 12.
    Irie H, Watanabe Y, Hashimoto K (2003) Carbon-doped anatase TiO2 powders as a visible-light sensitive photocatalyst. Chem Lett 32:772–773CrossRefGoogle Scholar
  13. 13.
    Kesselman JM, Weres O, Lewis NS, Hoffmann MR (1997) Electrochemical production of hydroxyl radical at polycrystalline Nb-doped TiO2 electrodes and estimation of the partitioning between hydroxyl radical and direct hole oxidation pathways. J Phys Chem B 101:2637–2643CrossRefGoogle Scholar
  14. 14.
    Adán C, Bahamonde A, Martínez-Arias A, Fernández-García M, Pérez-Estrada LA, Malato S (2007) Solar light assisted photodegradation of ethidium bromide over titania-based catalysts. Catal Today 129:79–85CrossRefGoogle Scholar
  15. 15.
    Znad H, Kawase Y (2009) Synthesis and characterization of S-doped Degussa P 25 with application in decolorization of Orange II dye as a model substrate. J Mol Catal a Chem 314:55–62CrossRefGoogle Scholar
  16. 16.
    Altomare M, Lee K, Killian MS, Selli E, Schmuki P (2013) Ta-doped TiO2 nanotubes for enhanced solar-light photoelectrochemical water splitting. Chem Eur J 19:5841–5844CrossRefGoogle Scholar
  17. 17.
    Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293:269–271CrossRefGoogle Scholar
  18. 18.
    Castro A, Nunes M, Carvalho M, Ferreira L, Jumas J-C, Costa F, Florêncio M (2009) Doped titanium dioxide nanocrystalline powders with high photocatalytic activity. J Solid State Chem 182:1838–1845CrossRefGoogle Scholar
  19. 19.
    Khan SU, Al-Shahry M, Ingler WB (2002) Efficient photochemical water splitting by a chemically modified n-TiO2. Science 297:2243–2245CrossRefGoogle Scholar
  20. 20.
    Obata K, Irie H, Hashimoto K (2007) Enhanced photocatalytic activities of Ta, N co-doped TiO2 thin films under visible light. Chem Phys 339:124–132CrossRefGoogle Scholar
  21. 21.
    Zhao W, Ma W, Chen C, Zhao J, Shuai Z (2004) Efficient degradation of toxic organic pollutants with Ni2O3/TiO2−x B x under visible irradiation. J. Ame. Chem. Soc. 126:4782–4783CrossRefGoogle Scholar
  22. 22.
    Bak T, Li W, Nowotny J, Atanacio AJ, Davis J (2015) Photocatalytic properties of TiO2: evidence of the key role of surface active sites in water oxidation. J Phys Chem a 119:9465–9473CrossRefGoogle Scholar
  23. 23.
    Bak T, Nowotny J, Sucher NJ, Wachsman E (2011) Effect of crystal imperfections on reactivity and photoreactivity of TiO2 (rutile) with oxygen, water, and bacteria. J Phys Chem C 115:15711–15738CrossRefGoogle Scholar
  24. 24.
    Nowotny J, Alim MA, Bak T, Idris MA, Ionescu M, Prince K, Sahdan MZ, Sopian K, Mat Teridi MA, Sigmund W (2015) Defect chemistry and defect engineering of TiO2-based semiconductors for solar energy conversion. Chem Soc rev 44:8424–8442CrossRefGoogle Scholar
  25. 25.
    Atanacio AJ, Ikuma Y (2016) Surface segregation of niobium and tantalum in titanium dioxide. Overview, J Ame Cera Soc 99:1512–1519CrossRefGoogle Scholar
  26. 26.
    Choi W, Termin A, Hoffmann MR (1994) The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics. J Phys Chem 98:13669–13679CrossRefGoogle Scholar
  27. 27.
    Karakitsou KE, Verykios XE (1993) Effects of altervalent cation doping of titania on its performance as a photocatalyst for water cleavage. J Phys Chem 97:1184–1189CrossRefGoogle Scholar
  28. 28.
    Kong L, Wang C, Zheng H, Zhang X, Liu Y (2015) Defect-induced yellow color in Nb-doped TiO2 and its impact on visible-light photocatalysis. J Phys Chem C 119:16623–16632CrossRefGoogle Scholar
  29. 29.
    Mattsson A, Leideborg M, Larsson K, Westin G, Österlund L (2006) Adsorption and solar light decomposition of acetone on anatase TiO2 and niobium doped TiO2 thin films. J Phys Chem B 110:1210–1220CrossRefGoogle Scholar
  30. 30.
    Nowotny J (2012) Oxide semiconductors for solar energy conversion: titanium dioxide. CRC Press, Boca RatonGoogle Scholar
  31. 31.
    Kavan L, Grätzel M, Gilbert SE, Klemenz C, Scheel HJ (1996) Electrochemical and photoelectrochemical investigation of single-crystal anatase. J Ame Chem Soc 118:6716–6723CrossRefGoogle Scholar
  32. 32.
    Diebold U (2003) The surface science of titanium dioxide. Surf Sci rep 48:53–229CrossRefGoogle Scholar
  33. 33.
    Lin H, Huang C, Li W, Ni C, Shah SI, Tseng Y-H (2006) Size dependency of nanocrystalline TiO2 on its optical property and photocatalytic reactivity exemplified by 2-chlorophenol. Appl Catal B Environ 68:1–11CrossRefGoogle Scholar
  34. 34.
    Znad H, Ang MH, Tade MO (2012) Ta/TiO2-and Nb/TiO2-mixed oxides as efficient solar photocatalysts: preparation, characterization, and photocatalytic activity. Int J Photoenergy 2012Google Scholar
  35. 35.
    Scanlon DO, Dunnill CW, Buckeridge J, Shevlin SA, Logsdail AJ, Woodley SM, Catlow CRA, Powell MJ, Palgrave RG, Parkin IP, Watson GW, Keal TW, Sherwood P, Walsh A, Sokol AA (2013) Band alignment of rutile and anatase TiO2. Nat Mater 12:798–801CrossRefGoogle Scholar
  36. 36.
    Zhu T, Gao S-P (2014) The stability, electronic structure, and optical property of TiO2 polymorphs. J Phys Chem C 118:11385–11396CrossRefGoogle Scholar
  37. 37.
    Kelly PJ, West GT, Ratova M, Fisher L, Ostovarpour S, Verran J (2014) Structural formation and photocatalytic activity of magnetron sputtered titania and doped-titania coatings. Molecules 19:16327–16348CrossRefGoogle Scholar
  38. 38.
    Pozio A (2015) Effect of tantalum doping on TiO2 nanotube arrays for water-splitting. Mod re Catal 4:1CrossRefGoogle Scholar
  39. 39.
    Yang M (2012) Band gap engineering and carrier transport in TiO2 for solar energy harvesting. University of Pittsburgh, PittsburghGoogle Scholar
  40. 40.
    Breault TM, Bartlett BM (2012) Lowering the band gap of anatase-structured TiO2 by coalloying with Nb and N: electronic structure and photocatalytic degradation of methylene blue dye. J Phys Chem C 116:5986–5994CrossRefGoogle Scholar
  41. 41.
    Lee DY, Park J-H, Kim Y-H, Lee M-H, Cho N-I (2014) Effect of Nb doping on morphology, crystal structure, optical band gap energy of TiO2 thin films. Curr Appl Phys 14:421–427CrossRefGoogle Scholar
  42. 42.
    Chao H, Yun Y, Xingfang H, Larbot A (2003) Effect of silver doping on the phase transformation and grain growth of sol-gel titania powder. J Eur Cera Soc 23:1457–1464CrossRefGoogle Scholar
  43. 43.
    Xin B, Jing L, Ren Z, Wang B, Fu H (2005) Effects of simultaneously doped and deposited Ag on the photocatalytic activity and surface states of TiO2. J Phys Chem B 109:2805–2809CrossRefGoogle Scholar
  44. 44.
    Yu JC, Yu J, Ho W, Jiang Z, Zhang L (2002) Effects of F-doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders. Chem Mater 14:3808–3816CrossRefGoogle Scholar
  45. 45.
    Yu J-G, Yu H-G, Cheng B, Zhao X-J, Yu JC, Ho W-K (2003) The effect of calcination temperature on the surface microstructure and photocatalytic activity of TiO2 thin films prepared by liquid phase deposition. J Phys Chem B 107:13871–13879CrossRefGoogle Scholar
  46. 46.
    Bak T, Nowotny J, Nowotny M (2006) Defect disorder of titanium dioxide. J Phys Chem B 110:21560–21567CrossRefGoogle Scholar
  47. 47.
    Kröger FA, Vink HJ (1956) Relations between the concentrations of imperfections in crystalline solids. In: Frederick S, David T (eds) Solid state physics. Academic Press, Cambridge, Massachusetts, pp 307–435Google Scholar
  48. 48.
    Mertin W, Gruehn R, Schäfer H (1970) Neue beobachtungen zum system TiO2-Ta2O5. J Solid State Chem 1:425–444CrossRefGoogle Scholar
  49. 49.
    Pascual J, Camassel J, Mathieu H (1977) Resolved quadrupolar transition in TiO2. Phys rev Lett 39:1490–1493CrossRefGoogle Scholar
  50. 50.
    Tauc J, Grigorovici R, Vancu A (1966) Optical properties and electronic structure of amorphous germanium. Phys Status Solidi (b) 15:627–637CrossRefGoogle Scholar
  51. 51.
    Calloway D (1997) Beer-Lambert law. J Chem Edu 74:744CrossRefGoogle Scholar
  52. 52.
    Kubelka P, Munk F (1931) Ein beitrag zur potik der farbanstriche. Z Tech Physik 12:593Google Scholar
  53. 53.
    O'Leary SK, Lim PK (1997) On determining the optical gap associated with an amorphous semiconductor: a generalization of the Tauc model. Solid State Commun 104:17–21CrossRefGoogle Scholar
  54. 54.
    Nowotny J, Atanacio A, Bak T, Belova I, Fiechter S, Ikuma Y, Ionescu M, Kennedy B, Majewski P, Murch G (2014) Photosensitive oxide semiconductors for solar hydrogen fuel and water disinfection. Int Mater rev 59:449–478CrossRefGoogle Scholar
  55. 55.
    Norby T (2009) Proton conduction in solids: bulk and interfaces. MRS Bull 34:923–928CrossRefGoogle Scholar
  56. 56.
    Li W, Bak T, Atanacio A, Nowotny J (2016) Photocatalytic properties of TiO2: effect of niobium and oxygen activity on partial water oxidation. Appl Catal B Environ 198:243–253CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Mohammad A. Alim
    • 1
  • Tadeusz Bak
    • 1
  • Armand J. Atanacio
    • 2
  • Mihail Ionescu
    • 2
  • Brendan Kennedy
    • 3
  • William S. Price
    • 4
  • Johan Du Plessis
    • 5
  • Maryam Pourmahdavi
    • 6
  • Meifang Zhou
    • 7
  • Allan Torres
    • 4
  • Janusz Nowotny
    • 1
    Email author
  1. 1.Solar Energy Technologies, School of Computing, Engineering and MathematicsWestern Sydney UniversityPenrithAustralia
  2. 2.Institute of Environmental ResearchAustralian Nuclear Science and Technology OrganisationKirrawee, DCAustralia
  3. 3.School of ChemistryThe University of SydneySydneyAustralia
  4. 4.Nanoscale Organisation and Dynamics GroupWestern Sydney UniversityPenrithAustralia
  5. 5.School of Applied SciencesRMIT UniversityMelbourneAustralia
  6. 6.Faculty of Mining and MetallurgyAmirkabir University of TechnologyTehranIran
  7. 7.School of ChemistryThe University of MelbourneMelbourneAustralia

Personalised recommendations