Advertisement

Ionics

, Volume 23, Issue 12, pp 3555–3564 | Cite as

Adapting the ionic transfer behavior of cation exchange membrane incorporated with SiO2/PAA composite nanoparticles

  • M. Nemati
  • S. M. HosseiniEmail author
Original Paper

Abstract

In this study, silicon dioxide nanoparticles (SiO2 NPs) were functionalized by polyacrylic acid (PAA) then used as the modifier agent in polyvinyl chloride (PVC)-based heterogeneous cation exchange membranes (CEMs). FTIR technique and SEM images were employed to characterize the synthesized SiO2/PAA. All the experiments were carried out at ambient condition. According to the experiments, CEMs modified by SiO2/PAA have more hydrophilic and smoother surface. Membrane water content reduced from 32.2% for the base membrane to 20.1% for modified membrane containing 4.0%wt SiO2/PAA. Modified CEMs showed an improved potential, transport number, selectivity, and electrical conductivity. The selectivity of modified membrane (containing 0.5%wt SiO2/PAA) is 87.3%, and its electrical conductivity is about 37% less than the base membrane. The mechanical stability of prepared membranes was also improved about 25.4%. Moreover, sodium flux increased sharply (21%) loading 0.5%wt NPs in the structure and then reduced by more SiO2/PAA concentration. In addition, membrane ionic flux decreased obviously for bivalent ions by using SiO2/PAA nanoparticles. The prepared membranes showed higher permeability/flux for monovalent ions compared to bivalent type.

Keywords

Heterogeneous cation exchange membrane SiO2/PAA composite nanoparticles Fabrication/electrochemical characterization Deionization 

Notes

Acknowledgments

The authors gratefully acknowledge Arak University for the financial support during this research.

References

  1. 1.
    Zuo X, Shi W, Tian Z, Yu S, Wang S, He J (2013) Desalination of water with a high degree of mineralization using SiO2/PVDF membranes. Desalination 311:150–155CrossRefGoogle Scholar
  2. 2.
    Thakur AK, Pandey RP, Shahi VK (2015) Preparation, characterization and thermal degradation studies of bi-functional cation-exchange membranes. Desalination 367:206–215CrossRefGoogle Scholar
  3. 3.
    Farrokhzad H, Kikhavani T, Monnaie F, Ashrafizadeh SN, Koeckelberghs G, Van Gerven T, Vander Bruggen B (2015) Novel composite cation exchange films based on sulfonated PVDF for electro-membrane separations. J Membr Sci 474:167–174CrossRefGoogle Scholar
  4. 4.
    Hassel KJ, Moresoli C (2015) Role of pH and ionic strength on weak cation exchange macro porous hydro-gel membranes and IgG capture. J Membr Sci 498:158–166CrossRefGoogle Scholar
  5. 5.
    Hosseini SM, Hamidi AR, Moghadassi AR, Koranian P, Madaeni SS (2015) Fabrication of novel mixed matrix electrodialysis heterogeneous ion exchange membranes modified by ilmenite (FeTiO3): electrochemical and ionic transport characteristics. Ionics 21:437–447CrossRefGoogle Scholar
  6. 6.
    Zuo X, Yu S, Shi W (2012) Effect of some parameters on the performance of electrodialysis using new type of PVDF-SiO2 ion-exchange membranes with single salt solution. Desalination 290:83–88CrossRefGoogle Scholar
  7. 7.
    Reig M, Farrokhzad H, Van der Bruggen B, Gibert O, Cortina JL (2015) Synthesis of a monovalent selective cation exchange membrane to concentrate reverse osmosis brines by electrodialysis. Desalination 375:1–9CrossRefGoogle Scholar
  8. 8.
    Farrokhzad H, Darvishmanesh S, Genduso G, Van Gerven T, Van der Bruggen B (2015) Development of bivalent cation selective ion exchange membranes by varying molecular weight of polyaniline. Electrochim Acta 158:64–72CrossRefGoogle Scholar
  9. 9.
    Fuoco A, Galier S, Roux-de Balmann H, Luca G (2015) Correlation between macroscopic sugar transfer and nano scale inter-actions in cation exchange membranes. J Membr Sci 493:311–320CrossRefGoogle Scholar
  10. 10.
    Mikhaylin S, Nikonenko V, Pismenskaya N, Pourcelly G, Choi S, Kwon HJ, Han J, Bazinet L (2016) How physico-chemical and surface properties of cation-exchange membrane affect membrane scaling and electro convective vortices: influence on performance of electrodialysis with pulsed electric field. Desalination 393:102–114CrossRefGoogle Scholar
  11. 11.
    Vyas PV, Ray P, Adhikary SK, Shah BG, Rangarajan R (2003) Studies of the effect of variation of blend ratio on permselectivity and heterogeneity of ion-exchange membranes. J Colloid Interface Sci 257:127–134CrossRefGoogle Scholar
  12. 12.
    Nemati M, Hosseini SM, Bagheripour E, Madaeni SS (2016) Surface modification of cation exchange membranes by graft polymerization of PAA-co-PANI/MWCNTs nanoparticles. Korean J Chem Eng 33:1037–1046CrossRefGoogle Scholar
  13. 13.
    Hosseini SM, Madaeni SS, Heidari AR, Khodabakhshi AR (2012) Preparation and characterization of poly(vinyl chloride)-blend-poly(carbonate) heterogeneous cation exchange membrane: investigation of solvent type and ratio effects. Desalination 285:253–262CrossRefGoogle Scholar
  14. 14.
    Hosseini SM, Rahzani B, Asiani H, Khodabakhshi AR, Hamidi AR, Madaeni SS, Moghadassi AR, Seidypoor A (2014) Surface modification of heterogeneous cation exchange membranes by simultaneous using polymerization of (acrylic acid-co-methyl methacrylate): membrane characterization in desalination process. Desalination 345:13–20CrossRefGoogle Scholar
  15. 15.
    Hosseini SM, Askari M, Koranian P, Madaeni SS, Moghadassi AR (2014) Fabrication and electrochemical characterization of PVC based electrodialysis heterogeneous cation exchange membranes filled with Fe3O4 nanoparticles. J Ind Eng Chem 20:2510–2520CrossRefGoogle Scholar
  16. 16.
    Hosseini SM, Nemati M, Jeddi F, Salehi E, Khodabakhshi AR, Madaeni SS (2015) Fabrication of mixed matrix heterogeneous cation exchange membrane modified by titanium dioxide nanoparticles: mono/bivalent ionic transport property in desalination. Desalination 359:167–175CrossRefGoogle Scholar
  17. 17.
    Hosseini SM, Gholami A, Koranian P, Nemati M, Madaeni SS, Moghadassi AR (2014) Electrochemical characterization of mixed matrix heterogeneous cation exchange membrane modified by aluminum oxide nanoparticles: mono/bivalent ionic transportation. J Taiwan Inst Chem Eng 45:1241–1248CrossRefGoogle Scholar
  18. 18.
    Hosseini SM, Jeddi F, Nemati M, Madaeni SS, Moghadassi AR (2014) Electrodialysis heterogeneous anion exchange membrane modified by PANI/MWCNT composite nanoparticles: preparation, characterization and ionic transport property in desalination. Desalination 341:107–114CrossRefGoogle Scholar
  19. 19.
    Hosseini SM, Ahmadi Z, Nemati M, Parvizian F, Madaeni SS (2016) Electrodialysis heterogeneous ion exchange membranes modified by SiO2 nanoparticles: fabrication and electrochemical characterization. Water Sci Technol 73:2074–2084CrossRefGoogle Scholar
  20. 20.
    Lin RY, Chen BS, Chen GL, Wu JY, Chiu HC, Suen SY (2009) Preparation of porous PMMA/Na+ montmorillonite cation-exchange membranes for cationic dye adsorption. J Membr Sci 326:117–129CrossRefGoogle Scholar
  21. 21.
    Ghaemi N, Madaeni SS, Daraei P, Rajabi H, Zinadini S, Alizadeh A, Heydari R, Beygzadeh M, Ghouzivand S (2015) Polyethersulfone membrane enhanced with iron oxide nanoparticles for copper removal from water: application of new functionalized Fe3O4 nanoparticles. Chem Eng J 263:101–112CrossRefGoogle Scholar
  22. 22.
    Razmjou A, Mansouri J, Chen V (2011) The effects of mechanical and chemical modification of TiO2 nanoparticles on the surface chemistry, structure and fouling performance of PES ultrafiltration membranes. J Membr Sci 378:73–84CrossRefGoogle Scholar
  23. 23.
    Li JF, Xu ZL, Yang H, Yu LY, Liu M (2009) Effect of TiO2 nanoparticles on the surface morphology and performance of microporous PES membrane. Appl Surf Sci 255:4725–4732CrossRefGoogle Scholar
  24. 24.
    Liang P, Shi T, Li J (2004) Nanometer-size titanium dioxide separation/pre-concentration and FAAS determination of trace Zn and Cd in water sample. Int J Environ Anal Chem 84:315–321CrossRefGoogle Scholar
  25. 25.
    Ma W, Xu S, Li J, Guo J, Lin Y, Wang C (2011) Hydrophilic dual-responsive magnetite/PMAA core/shell micro spheres with high magnetic susceptibility and pH sensitivity via distillation-precipitation polymerization. J Polym Sci, Part A: Polym Chem 49:2725–2733CrossRefGoogle Scholar
  26. 26.
    Madaeni SS, Zinadini S, Vatanpour V (2011) A new approach to improve antifouling property of PVDF membrane using in situ polymerization of PAA functionalized TiO2 nanoparticles. J Membr Sci 380:155–162CrossRefGoogle Scholar
  27. 27.
    Yu S, Zuo X, Bao R, Xu X, Wang J, Xu J (2009) Effect of SiO2 nanoparticle addition on the characteristics of a new organic–inorganic hybrid membrane. Polymer 50:553–559CrossRefGoogle Scholar
  28. 28.
    Hosseini SM, Madaeni SS, Khodabakhshi AR (2010) Preparation and characterization of PC/SBR heterogeneous cation exchange membranes filled with carbon nano-tube. J Membr Sci 362:550–559CrossRefGoogle Scholar
  29. 29.
    Gohil GS, Binsu VV, Shahi VK (2006) Preparation and characterization of monovalent ion selective polypyrrole composite ion-exchange membranes. J Membr Sci 280:210–218CrossRefGoogle Scholar
  30. 30.
    Nagarale RK, Shahi VK, Schubert R, Rangarajan R, Mehnert R (2004) Development of urethane acrylate composite ion-exchange membranes and their electrochemical characterization. J Colloid Interface Sci 270:446–454CrossRefGoogle Scholar
  31. 31.
    Nagarale RK, Gohil GS, Shahi VK, Rangarajan R (2004) Preparation and electrochemical characterizations of cation-exchange membranes with different functional groups. Colloids Surf A: Physicochem Eng Aspects 251:133–140CrossRefGoogle Scholar
  32. 32.
    Nagarale RK, Shahi VK, Thampy SK, Rangarajan R (2004) Studies on electrochemical characterization of polycarbonate and polysulfone based heterogeneous cation exchange membranes. React Funct Polym 61:131–138CrossRefGoogle Scholar
  33. 33.
    Lide DR (2006) CRC handbook of chemistry and physics, 87th edn. CRC Press, Boca RatonGoogle Scholar
  34. 34.
    Li X, Wang Z, Lu H, Zhao C, Na H (2005) Electrochemical properties of sulphonated PEEK used for ion exchange membranes. J Membr Sci 254:147–155CrossRefGoogle Scholar
  35. 35.
    Kerres J, Cui W, Disson R, Neubrand W (1998) Development and characterization of cross linked ionomer membranes based upon sulfinated and sulfonated PSU cross linked PSU blend membranes by dis-proportionation of sulfinic acid groups. J Membr Sci 139:211–225CrossRefGoogle Scholar
  36. 36.
    Sata T (2004) Ion exchange membranes: preparation, characterization, modification and application. The Royal Society of Chemistry, CambridgeGoogle Scholar
  37. 37.
    Tanaka Y (2007) Ion exchange membranes: fundamentals and applications. Membrane science and technology series, vol 12. Elsevier, AmsterdamGoogle Scholar
  38. 38.
    Nemati M, Hosseini SM (2016) Fabrication and electrochemical property modification of mixed matrix heterogeneous cation exchange membranes filled with Fe3O4/PAA core-shell nanoparticles. Ionics 9:899–909CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Chemical Engineering, Faculty of EngineeringArak UniversityArakIran

Personalised recommendations