Ionics

, Volume 23, Issue 8, pp 2125–2132 | Cite as

Promising performances for a La0.6Sr0.4Co0.8Fe0.2O3-δ cathode with a dense interfacial layer at the electrode-electrolyte interface

  • K. Dumaisnil
  • J.-C. Carru
  • D. Fasquelle
  • M. Mascot
  • A. Rolle
  • R.-N. Vannier
Original Paper

Abstract

As for the commonly studied La0.6Sr0.4Co0.2Fe0.8O3-δ (6428), here, a very low area-specific resistance (ASR) was measured for La0.6Sr0.4Co0.8Fe0.2O3-δ (6482) cathode deposited on a Ce0.9Gd0.1O2-δ (GDC) electrolyte with addition of a thin (1 μm) dense LSCF film deposited by spin coating at the interface between the GDC electrolyte and a 40-μm-thick screen-printed electrode. The ASR ranged from 1 Ω.cm2 at 500 °C, 0.11 Ω.cm2 at 625 °C and value as low as 0.03 Ω.cm2 at 700 °C. Impedance spectra collected in between 500 and 700 °C were carefully studied. They could all be modelled with two R//CPE in series which are likely associated to the oxygen reduction reaction itself (dissociation/adsorption/ionization) at low frequency and to the oxide ion transfer at the electrode/electrolyte interface at high frequency.

Keywords

LSCF Electrode-electrolyte interface SOFC Electrochemical impedance spectroscopy 

Notes

Acknowledgments

The authors are grateful to the Région Nord-Pas de Calais for the attribution of an “Emergent Project” called OPERAH which funded a part of this work.

References

  1. 1.
    Li W, Lu K, Xia Z (2013) J Power Sources 237:119–127CrossRefGoogle Scholar
  2. 2.
    Steele BCH, Bae JM (1998) Solid State Ionics 106:255–261CrossRefGoogle Scholar
  3. 3.
    Lane JA, Benson SJ, Waller D, Kilner JA (1999) Solid State Ionics 121:201–208CrossRefGoogle Scholar
  4. 4.
    Hwang HJ, Moon JW, Lee S, Lee EA (2005) J Power Sources 145:243–248CrossRefGoogle Scholar
  5. 5.
    Liu M, Ding D, Blinn K, Li X, Nie L, Liu M (2012) Int J Hydrog Energy 37:8613–8620CrossRefGoogle Scholar
  6. 6.
    Marinha D, Dessemond L, Scott Cronin J, Wilson JR, Barnett SA, Djurado E (2011) Chem Mater 23:5340–5348CrossRefGoogle Scholar
  7. 7.
    Marinha D, Dessemond L, Djurado E (2011) ECS. Transactions 35(1):2283–2294Google Scholar
  8. 8.
    Marinha D, Hayd J, Dessemond L, Ivers-Tiffée E, Djurado E (2011) J Power Sources 196:5084–5090CrossRefGoogle Scholar
  9. 9.
    Hildenbrand N, Boukamp BA, Nammensma P, Blank DHA (2011) Solid State Ionics 192:12–15CrossRefGoogle Scholar
  10. 10.
    Hildenbrand N, Nammensma P, Blank DHA, Bouwmeester HJM, Boukamp BA (2013) J Power Sources 238:442–453CrossRefGoogle Scholar
  11. 11.
    Berenov AV, Atkinson A, Kilner JA, Bucher E, Sitte W (2010) Solid State Ionics 181:819–826CrossRefGoogle Scholar
  12. 12.
    Hayd J, Yokokawa H, Ivers-Tiffée E (2013) J Electrochem Soc 160:F351–F359CrossRefGoogle Scholar
  13. 13.
    Yamamoto O (2000) Electrochim Acta 45:2423–2435CrossRefGoogle Scholar
  14. 14.
    Kordesch K, Simader G (1996) Fuel cells and their applications. VCH, Weinheim/Wiley, NY (U.S.A)CrossRefGoogle Scholar
  15. 15.
    Ullman H, Trofimenko N, Tietz F, Stöver D, Ahmad-Khanlou A (2000) Solid State Ionics 138:79–90CrossRefGoogle Scholar
  16. 16.
    Boukamp BA (1995) J Electrochem Soc 142:1885–1894CrossRefGoogle Scholar
  17. 17.
    ZView software, version 3.4a, Scribner Associates Inc., Southern Pines (N. C., USA)Google Scholar
  18. 18.
    Cole KS, Cole RH (1941) J Chem Phys 9:341–351CrossRefGoogle Scholar
  19. 19.
    Boukamp BA (2004) Solid State Ionics 169:65–73CrossRefGoogle Scholar
  20. 20.
    Orazem ME, Pébère N, Tribollet P (2006) J Electrochem Soc 153:B129–B136CrossRefGoogle Scholar
  21. 21.
    Barsoukov E, Ross MacDonald J (eds) (2005) Impedance spectroscopy: theory, experiment and applications. Wiley-Interscience, Hoboken (N. J., U.S.A)Google Scholar
  22. 22.
    Ibusuki Y, Kunigo H, Hirata Y, Sameshima S, Matsunaga N (2011) J Eur Ceram Soc 31(14):2663–2669CrossRefGoogle Scholar
  23. 23.
    Lai W, Haile SM (2005) J Am Ceram Soc 88:2979–2997CrossRefGoogle Scholar
  24. 24.
    Nielsen J, Jacobsen T, Wandel M (2011) Electrochim Acta 56:7963–7974CrossRefGoogle Scholar
  25. 25.
    Boukamp BA (1986) Solid State Ionics 20:31–44CrossRefGoogle Scholar
  26. 26.
    Baumann FS, Fleig J, Habermeier H-U, Maier J (2006) Solid. State Ionics 177(11–12):1071–1081CrossRefGoogle Scholar
  27. 27.
    K. Dumaisnil, Ph. D thesis University of Littoral-Côte d’Opale (2015) Calais (France)Google Scholar
  28. 28.
    Adler SB (2004) Chem Rev 104:4791–4843CrossRefGoogle Scholar
  29. 29.
    Simrick NJ, Bieberle-Hütter A, Ryll TM, Kilner JA, Atkinson A, Rupp JLM (2012) Solid State Ionics 206:7–16CrossRefGoogle Scholar
  30. 30.
    Leonide A, Sonn V, Weber A, Ivers-Tiffée E (2008) J Electrochem Soc 155:B36–B41CrossRefGoogle Scholar
  31. 31.
    Baumann FS, Fleig J, Habermeier H-U, Maier J (2006) Solid State Ionics 177(35–36):3187–3191CrossRefGoogle Scholar
  32. 32.
    Zoltowski P (1998) J Electroanal Chem 443:149–154CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • K. Dumaisnil
    • 1
  • J.-C. Carru
    • 1
  • D. Fasquelle
    • 1
  • M. Mascot
    • 1
  • A. Rolle
    • 2
  • R.-N. Vannier
    • 2
  1. 1.Unité de Dynamique et Structure des Matériaux MoléculairesUniversité du Littoral Côte d’OpaleCalais CedexFrance
  2. 2.Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. ArtoisUMR 8181 - UCCS - Unité de Catalyse et Chimie du SolideLilleFrance

Personalised recommendations