Ionics

, Volume 23, Issue 7, pp 1645–1653 | Cite as

Enhanced electrochemical performance of LiMnBO3 with conductive glassy phase: a prospective cathode material for lithium-ion battery

  • V. Ragupathi
  • M. Safiq
  • P. Panigrahi
  • T. Hussain
  • S. Raman
  • R. Ahuja
  • G. S. Nagarajan
Original Paper

Abstract

LiMnBO3 has been identified as a promising cathode material for next-generation lithium-ion batteries. In this study, LiMnBO3 along with glassy lithium borate material (LiMnBO3 (II)) is synthesized by sol-gel method. X-ray diffraction (XRD) analysis depicts the existence of LiBO2 glassy phase along with m-LiMnBO3 phase. Transmission electron microscopy (TEM) analysis confirms the presence of LiBO2 glassy phase. An enhanced electrical conductivity of 3.64 × 10−7 S/cm is observed for LiMnBO3 (II). The LiBO2 glassy phase is found to promote the Li reaction kinetics in LiMnBO3 (II). The synthesized LiMnBO3 (II) delivers a first discharge capacity of 310 mAh g−1 within a potential window of 1.5–4.5 V at C/10 rate. Further, a discharge capacity of 186 mAh g−1 at the 27th cycle shows a better cycle performance. The enhanced capacity is due to the presence of LiBO2 glassy phase and more than one Li-ion transfer in the lithium-rich stoichiometry of LiMnBO3 (II). Density functional theory calculation reveals the exact electronic structure of m-LiMnBO3 with a band gap of 3.05 eV. A charge transfer mechanism is predicted for delithiation process of m-LiMnBO3.

Keywords

Monoclinic LiMnBO3 Enhanced capacity Lithium borate Conductive glassy phase 

Notes

Acknowledgements

We would like to acknowledge research funds from the management of Hindustan Institute of Technology and Science through CENCON. The authors sincerely thanks D. Shanmukaraj Devaraj, CIC ENERGIGUNE for electrochemical characterization. NGS acknowledges support from Dongguk University through NITA. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2016952454). This work was also supported by National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology (MEST) of Korea (Grant No. 2014-073957)

References

  1. 1.
    Chen L, Zhao Y, An X, Liu J, Dong Y, Chen Y, Kuang Q (2010) Structure and electrochemical properties of LiMnBO3 as a new cathode material for lithium-ion batteries. J Alloy Compd 494:415–419. doi: 10.1016/j.jallcom.2010.01.065 CrossRefGoogle Scholar
  2. 2.
    Lee K-J, Kang L-S, Uhm S, Yoon JS, Kim D-W, Hong HS (2013) Synthesis and characterization of LiMnBO3 cathode material for lithium ion batteries. Curr Appl Phys 13:1440–1443. doi: 10.1016/j.cap.2013.04.027 CrossRefGoogle Scholar
  3. 3.
    Deng D (2015) Li-ion batteries: basics progress and challenges. Energy Sci Eng 3:385–481. doi: 10.1002/ese3.95 CrossRefGoogle Scholar
  4. 4.
    Xu B, Qian D, Wang Z, Meng YS (2012) Recent progress in cathode materials research for advanced lithium ion batteries. Mater Sci Eng R 73:51–65. doi: 10.1016/j.mser.2012.05.003 CrossRefGoogle Scholar
  5. 5.
    Gongand Z, Yang Y (2011) Recent advances in the research of polyanion-type cathode materials for Li-ion batteries. Energy Environ Sci 4:3223–3242. doi: 10.1039/C0EE00713G CrossRefGoogle Scholar
  6. 6.
    Kraytsberg A, Ein-Eli Y (2012) Higher, stronger, better … a review of 5 volt cathode materials for advanced lithium-ion batteries. Adv Energy Mater 2:922–939. doi: 10.1002/aenm.201200068 CrossRefGoogle Scholar
  7. 7.
    Wu X-B, Wu X-H, GuoJ-H LS-D, Liu R, McDonald MJ, Yang Y (2015) In: Zhang Z, Zhang SS (eds) Polyanion compounds as cathode materials for Li-ion batteries, rechargeable batteries, green energy technology. Springer, Switzerland, pp 93–134Google Scholar
  8. 8.
    Aravindan V, Karthikeyan K, Ameresh S, Lee YS (2010) LiMnBO3/C: a potential cathode material for lithium batteries. Bull Kor Chem Soc 31:1506–1508. doi: 10.5012/bkcs.2010.31.6.1506 CrossRefGoogle Scholar
  9. 9.
    Allen JL, Xu K, Zhang SS, Jow TR (2002) LiMBO3 (M = Fe, Mn): potential cathode for lithium ion batteries. Mat Res Soc Symp Proc 730: V1.8.1–6. doi: 10.1557/PROC-730-V1.8
  10. 10.
    Legagneur V, An Y, Mosbah A, Portal R, Le Gal La Salle A, Verbaere A, Guyomard D, Piffard Y (2001) LiMBO (M = Mn, Fe, Co): synthesis, crystal structure and lithium deinsertion / insertion properties. Solid State Ionics 139:37–46. doi: 10.1016/S0167-2738(00)00813-4 CrossRefGoogle Scholar
  11. 11.
    Ma T, Muslim A, Su Z (2015) Microwave synthesis and electrochemical properties of lithium manganese borate as cathode for lithium ion batteries. J Power Sources 282:95–99. doi: 10.1016/j.jpowsour.2015.02.013 CrossRefGoogle Scholar
  12. 12.
    Karthikeyan K, Lee YS (2014) Microwave synthesis of high rate nano structured LiMnBO3 with excellent cyclic behavior for lithium ion batteries. RSC Adv 4:31851–31854. doi: 10.1039/c4ra04400b CrossRefGoogle Scholar
  13. 13.
    Afyon S, Kundu D, Darbandi AJ, Hahn H, Krumeicha F, Nesper R (2014) A low dimensional composite of hexagonal lithium manganese borate (LiMnBO3), a cathode material for Li-ion batteries. J Mater Chem A 2:18946–18951. doi: 10.1039/c4ta04209c CrossRefGoogle Scholar
  14. 14.
    Isono M, Okada S, Yamaki J (2010) Synthesis and electrochemical characterization of amorphous Li–Fe–P–B–O cathode materials for lithium batteries. J Power Sources 195:593–598. doi: 10.1016/j.powsour.2009.07.038 CrossRefGoogle Scholar
  15. 15.
    Kim JC, Seo D-H, Chen H, Ceder G (2015) The effect of antisite disorder and particle size on Li intercalation kinetics in monoclinic LiMnBO3. Adv Energy Mater 5(140191):–8. doi: 10.1002/aenm.201401916
  16. 16.
    Herle PS, Ellis B, Coombs N, Nazar LF (2004) Nano-network electronic conduction in iron and nickel olivine phosphates. Nat Mater 3:147–152. doi: 10.1038/nmat1063 CrossRefGoogle Scholar
  17. 17.
    Wang S, Huang X, Chen L (2000) Activation of LiMnBO glass as cathode material for lithium-ion batteries. J Mater Chem 10:1465–1467. doi: 10.1039/A907374D CrossRefGoogle Scholar
  18. 18.
    Afyon S, Krumeich F, Mensing C, Borgschulte A, Nesper R (2014) New high capacity cathode materials for rechargeable Li-ion batteries: vanadate - borate glasses. Scientific Reports 4:7113. doi: 10.1038/srep07113 CrossRefGoogle Scholar
  19. 19.
    Kim JC, Moore CJ, Kang B, Hautier G, Jain A, Ceder G (2011) Synthesis and electrochemical properties of monoclinic LiMnBO3 as a Li intercalation material. J Electrochem Soc 158:A309–A315. doi: 10.1149/1.3536532 CrossRefGoogle Scholar
  20. 20.
    Tao L, Neilson JR, Melot BC, McQueen TM, Masquelier C, Rousse G (2013) Magnetic structures of LiMBO3 (M = Mn, Fe, Co) lithiated transition metal borates. Inorg Chem 52:11966–11974. doi: 10.1021/ic401671m CrossRefGoogle Scholar
  21. 21.
    Lee YS, Lee H (2014) Structure and electrochemical behavior of LiMnBO3 synthesized at various temperatures. Electron Mater Lett 10:253–258. doi: 10.1007/s13391-013-3170-7 CrossRefGoogle Scholar
  22. 22.
    Ma R, Shao L, Wu K, Lao M, Shui M, Cheng C, Wang D, Long N, Ren Y, Shu J (2013) Electrochemical behaviors of hexagonal LiMnBO3 as lithium storage host material for lithium-ion batteries. Ceram Int 39(8):9309–9317. doi: 10.1016/j.ceramint.2013.05.046 CrossRefGoogle Scholar
  23. 23.
    Kim JC, Seo D-H, Ceder G (2015) Theoretical capacity achieved in a LiMn0.5Feo.4Mg0.1BO3 cathode by using topological disorder. Energy Environ Sci 8:1790–1798. doi: 10.1039/C5EE00930H CrossRefGoogle Scholar
  24. 24.
    Afyon S, Wçrle M, Nesper R (2013) A lithium-rich compound Li7Mn(BO3)3 containing Mn2+ in tetrahedral coordination: a cathode candidate for lithium-ion batteries. Angew Chem Int Ed 52:12541–12544. doi: 10.1002/anie.201307655 CrossRefGoogle Scholar
  25. 25.
    Kohn W, Sham LJ (1965) Self-consistent equations including exchange and co-relation effects. Phys Rev 140:A1133–A1138. doi: 10.1103/PhysRev.140.A1133 CrossRefGoogle Scholar
  26. 26.
    Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47:558–561. doi: 10.1103/PhysRevB.47.558 CrossRefGoogle Scholar
  27. 27.
    Kresse G, Furthmuller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp Mater Sci 6:15–50. doi: 10.1016/0927-0256(96)00008-0 CrossRefGoogle Scholar
  28. 28.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868. doi: 10.1103/PhysRevLett.77.3865 CrossRefGoogle Scholar
  29. 29.
    Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775. doi: 10.1103/PhysRevB.59.1758 CrossRefGoogle Scholar
  30. 30.
    Zhou F, Cococcioni M, Marianetti CA, Morgan D, Ceder G (2004) First–principles prediction of redox potentials in transition—metal compounds with LDA + U. Phys Rev B 70:235121–235128. doi: 10.1103/PhysRevB.70.235121 CrossRefGoogle Scholar
  31. 31.
    Zhou F, Kang KS, Maxisch T, Ceder G, Morgan D (2004) The electronic structure and band gap of LiFePO4 and LiMnPO4. Solid State Comm 132:181–186. doi: 10.1016/j.ssc.2004.07.055 CrossRefGoogle Scholar
  32. 32.
    Anisimov VI, Zaanen J, Andersen OK (1991) Band theory and Mott insulators: Hubbard U instead of stoner I. Phys Rev B 44:943–954. doi: 10.1103/PhysRevB.44.943 CrossRefGoogle Scholar
  33. 33.
    Morgan D, Van der Ven A, Ceder G (2004) Li conductivity in LixMPO4 (M = Mn, Fe, Co, Ni) olivine materials. Elect chem Solid State Lett 7:A30–A32. doi: 10.1149/1.1633511 CrossRefGoogle Scholar
  34. 34.
    Kang K, Ceder G (2006) Factors that affect Li mobility in layered lithium transition metal oxides. Phys Rev B 74:094105–094107. doi: 10.1103/PhysRevB.74.094105 CrossRefGoogle Scholar
  35. 35.
    Ma X, Kang B, Ceder G (2010) High rate micron-sized ordered LiNi0.5Mn1.5O4. J Electrochem Soc 157:A925–A931. doi: 10.1149/1.3439678 CrossRefGoogle Scholar
  36. 36.
    Monkhorst HJ, Pack JD (1976) Special points for Brillouin–zone integrations. Phys Rev B 13:5188–5192. doi: 10.1103/PhysRevB.16.1748 CrossRefGoogle Scholar
  37. 37.
    Karthikeyan K, Amaresh S, Lee S-N, An J-Y, Lee Y-S (2014) High-power lithium-ion capacitor using LiMnBO3-nanobead anode and polyaniline-nanofiber cathode with excellent cycle life. Chem Sus Chem 7:2310–2316. doi: 10.1002/cssc.201402055 CrossRefGoogle Scholar
  38. 38.
    Yan B, Liu J, Song B, Xiao P, Lu L (2013) Li-rich thin film cathode prepared by pulsed laser deposition. Sci Rep 3:3332. doi: 10.1038/srep03332 CrossRefGoogle Scholar
  39. 39.
    Grey CP, Dupré N (2004) NMR studies of cathode materials for lithium-ion rechargeable batteries. Chem Rev 104:4493–4512. doi: 10.1021/cr020734p
  40. 40.
    Babu KJ, Kumar PJ, Hussain OM (2013) Growth, microstructure and electrochemical properties of RF sputtered LiMn2O4 thin films on Au/polyimide flexible substrates. Mater Sci Appl 4:128–133. doi: 10.4236/msa.2013.42014 Google Scholar
  41. 41.
    Kang J, Mathew V, Gim J, Kim S, Song J, Im WB, Han J, Lee JY, Kim J (2014) Pyro-synthesis of a high rate nano-Li3V2(PO4)3/C cathode with mixed morphology for advanced Li-ion batteries. Sci Rep 4:4047. doi: 10.1038/srep04047 CrossRefGoogle Scholar
  42. 42.
    Kim JC, Li X, Kang B, Ceder G (2015) High-rate performance of a mixed olivine cathode with off-stoichiometric composition. Chem Commun 5:13279–13282. doi: 10.1039/c5cc04434k CrossRefGoogle Scholar
  43. 43.
    Andersson M, Abraham DP, Haasch R, MacLaren S, Liu J, Amine K (2002) Surface characterization of electrodes from high power lithium-ion batteries. J Electrochem Soc 149:A1358–A1369. doi: 10.1149/1.1505636 CrossRefGoogle Scholar
  44. 44.
    Kang B, Ceder G (2009) Battery materials for ultrafast charging and discharging. Nature 458:190–193. doi: 10.1038/nature07853 CrossRefGoogle Scholar
  45. 45.
    Tan G, Wu F, Li L, Chen R, Chen S (2013) Coralline glassy lithium phosphate-coated lifepo4 cathodes with improved power capability for lithium ion batteries. J Phys Chem C 117:6013–6021. doi: 10.1021/jp309724q CrossRefGoogle Scholar
  46. 46.
    Jang DH, Oh SM (1997) Electrolyte effects on spinel dissolution and cathodic capacity losses in 4 V Li / LixMn2O4 rechargeable cells. J Electrochem Soc 144:3342–3348. doi: 10.1149/1.1838016 CrossRefGoogle Scholar
  47. 47.
    Seo D-H, Park Y-U, Kim S-W, Park I, Shakoor RA, Kang K (2011) First-principles study on lithium metal borate cathodes for lithium rechargeable batteries. Phys Rev B 83:205127–205128. doi: 10.1103/PhysRevB.83.205127 CrossRefGoogle Scholar
  48. 48.
    Anisimov VI, Aryasetiawan F, Lichtenstein AI (1997) First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA + U method. J Phys Cond Matter 9:767–808. doi: 10.1088/0953-8984/9/4/002 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • V. Ragupathi
    • 1
  • M. Safiq
    • 2
    • 3
  • P. Panigrahi
    • 1
    • 2
  • T. Hussain
    • 2
    • 3
  • S. Raman
    • 1
  • R. Ahuja
    • 2
    • 3
  • G. S. Nagarajan
    • 4
  1. 1.Centre for Clean Energy and Nano ConvergenceHindustan Institute of Technology and ScienceChennaiIndia
  2. 2.Condensed Matter Theory Group, Materials Theory Division, Department of Physics and AstronomyUppsala UniversityUppsalaSweden
  3. 3.Applied Materials Physics, Departments of Materials and EngineeringRoyal Institute of Technology (KTH)StockholmSweden
  4. 4.Nano Information Technology Academy (NITA)Dongguk UniversitySeoulRepublic of Korea

Personalised recommendations