, Volume 23, Issue 5, pp 1137–1154 | Cite as

The effect of NH4NO3 towards the conductivity enhancement and electrical behavior in methyl cellulose-starch blend based ionic conductors

  • M. H. Hamsan
  • M. F. Shukur
  • M. F. Z. KadirEmail author
Original Paper


Solid polymer electrolytes based on methyl cellulose (MC)-potato starch (PS) blend doped with ammonium nitrate (NH4NO3) are prepared by solution cast technique. The interaction between the electrolyte’s materials is proven by Fourier transform infrared (FTIR) analysis. The thermal stability of the electrolytes is obtained from thermogravimetric analysis (TGA). The room temperature conductivity of undoped 60 wt.% MC-40 wt.% PS blend film is identified to be (1.04 ± 0.19) × 10−11 S cm−1. The addition of 30 wt.% NH4NO3 to the polymer blend has optimized the room temperature conductivity to (4.37 ± 0.16) × 10−5 S cm−1. Conductivity trend is verified by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and dielectric analysis. Temperature-dependence of conductivity obeys Arrhenius rule. Conductivity is found to be influenced by the number density (n) and mobility (μ) of ions. From transference number measurements (TNM), ions are found to be the dominant charge carriers.


Solid polymer electrolyte Methyl cellulose-potato starch blend Ammonium nitrate Ionic conductivity Dielectric 



The authors thank the University of Malaya for the grant FP009-2015A awarded.


  1. 1.
    Armand JM, Duclot M (1978) Second International Meeting on Solid Electrolytes, St. Andrews, UK, University of St. Andrews edition.Google Scholar
  2. 2.
    Tiwari T, Srivastava N, Srivastava PC (2013) Ion dynamics study of potato starch + sodium salts electrolyte system. J electrochemist 116:11362–11369. doi: 10.1155/2013/670914 Google Scholar
  3. 3.
    Rajendran S, Mahendran O (2003) Ionic conductivity studies in PMMA / PVdF polymer blend electrolyte with lithium salts. Ionics 9:463–468Google Scholar
  4. 4.
    Qianru S, Lixin X, Dejun Q, Bing D, Jian W, Liquan C (2014) Single ion solid-state composite electrolytes with high electrochemical stability based on a poly(perfluoroalkylsulfonyl)-imide ionene polymer. J Mater Chem A 2:15952–15957. doi: 10.1039/C4TA02810D CrossRefGoogle Scholar
  5. 5.
    Ramesh S, Liew CW, Arof AK (2011) Ion conducting corn starch biopolymer electrolytes doped with ionic liquid 1- butyl-3-methylimidazolium hexafluorophosphate. J Non-Cryst Solids 357:3654–3660. doi: 10.1016/j.jnoncrysol.2011.06.030 CrossRefGoogle Scholar
  6. 6.
    Shuhaimi NEA, Alias NA, Kufian MZ, Majid SR, Arof AK (2010) Characteristics ofmethyl cellulose-NH4NO3-PEG electrolyte and application in fuel cells. J Solid State Electrochem 14:2153–2159. doi: 10.1007/s10008-010-1099-4 CrossRefGoogle Scholar
  7. 7.
    Teoh KH, Chin-Shen L, Ramesh S (2014) Lithium Ion conduction in corn starch based solid polymer electrolytes. Measurement 48:87–95. doi: 10.1016/j.measurement.2013.10.040 CrossRefGoogle Scholar
  8. 8.
    Shuhaimi NEA, Majid SR, Arof AK (2009) On complexation between methyl cellulose and ammonium nitrate. Mater Res Innov 13:239–242. doi: 10.1179/143307509X440406 CrossRefGoogle Scholar
  9. 9.
    Sudhakar YN, Selvakumar M, Bhat DK (2013) LiClO4-doped plasticized chitosan and poly(ethylene glycol) blend as biodegradable polymer electrolyte for supercapacitors. Ionics 19:277–285. doi: 10.1007/s11581-012-0745-5 CrossRefGoogle Scholar
  10. 10.
    Ning W, Xingxiang Z, Haihui L, Benqiao H (2009) 1-Allyl-3- methylimidazolium chloride plasticized-corn starch as solid biopolymer electrolytes. Carbohydr Polym 76:482–484. doi: 10.1016/j.carbpol.2008.11.005 CrossRefGoogle Scholar
  11. 11.
    Samsudin AS, Khairul WM, Isa MIN (2012) Characterization on the potential of carboxy methylcellulose for application as proton conducting biopolymer electrolytes. J Non-Cryst Solids 358:1104–1112. doi: 10.1016/j.jnoncrysol.2012.02.004 CrossRefGoogle Scholar
  12. 12.
    Debeaufort F, Voilley A, Meares P (1994) Water vapor permeability and diffusivity through methylcellulose edible films. J Membr Sci 91:125–133. doi: 10.1016/0376-7388(94)00024-7 CrossRefGoogle Scholar
  13. 13.
    Chandra S, Hashimi SA, Prasad G (1990) Studies on ammonuim perchlorate doped polyethylene oxide polymer electrolyte. Solid State Ionics 40:651–654. doi: 10.1016/0167-2738(90)90090-E CrossRefGoogle Scholar
  14. 14.
    Biswal DR, Singh RP (2004) Characterisation of carboxymethyl cellulose and polyacrylamide graft copolymer. Carbohydr Polym 57:379–387. doi: 10.1016/j.carbpol.2004.04.020 CrossRefGoogle Scholar
  15. 15.
    Xiaofei M, Peter R, Chang B (2008) Properties of biodegradable thermoplastic pea starch/carboxymethyl cellulose and pea starch/microcrystalline cellulose composites Carbohydr. Polym 72:369–375. doi: 10.1016/j.carbpol.2007.09.002 Google Scholar
  16. 16.
    Sudhakar YN, Selvakumar M (2012) Lithium perchlorate doped plasticized chitosan and starch blend as biodegradable polymer electrolyte for supercapacitors. Electrochim Acta 78:398–405. doi: 10.1016/j.electacta.2012.06.032 CrossRefGoogle Scholar
  17. 17.
    Rajendran S, Mahendran O (2001) Experimental investigations on plasticized PMMA/PVA polymer blend electrolytes. Ionics 7:463–468. doi: 10.1007/BF02373585 CrossRefGoogle Scholar
  18. 18.
    Shukur MF, Kadir MFZ (2015) Electrical and transport properties of NH4Br-doped cornstarch-based solid biopolymer electrolyte. Ionics 21:111–124. doi: 10.1007/s11581-014-1157-5 CrossRefGoogle Scholar
  19. 19.
    Shukur MF, Majid NA, Ithnin R, Kadir MFZ (2013) Effect of plasticization on the conductivity and dielectric properties of starch–chitosan blend biopolymer electrolytes infused with NH4Br. Phys Scr 57:014051–014057. doi: 10.1088/0031-8949/2013/T157/014051 CrossRefGoogle Scholar
  20. 20.
    Yusof YM, Kadir MFZ (2016) Electrochemical characterizations and the effect of glycerol in biopolymer electrolytes based on methylcellulose-potato starch blend. Mol Cryst Liq Cryst 627:1–4. doi: 10.1080/15421406.2015.1137115 CrossRefGoogle Scholar
  21. 21.
    Abd El-Kader MFH, Ragab HS (2013) DC conductivity and dielectric properties of maize starch/methylcellulose blend films. Ionics 19:361–369. doi: 10.1007/s11581-012-0742-8 CrossRefGoogle Scholar
  22. 22.
    Donatell P, Barbara B, Romano L, Cristian R, Alessandro S (2003) Starch–methylcellulose based edible films: rheological properties of film-forming dispersions. J Food Eng 59:25–32. doi: 10.1016/S0260-8774(02)00426-0 CrossRefGoogle Scholar
  23. 23.
    Shukur MF, Ithnin R, Kadir MFZ (2014) Protonic transport analysis of starch-chitosan blend based electrolytes and application in electrochemical device. Mol Cryst Liq Cryst 603:52–65. doi: 10.1080/15421406.2014.966259 CrossRefGoogle Scholar
  24. 24.
    Johan MR, Ting LM (2011) Structural, thermal and electrical properties of nano manganese-composite polymer electrolyte. Int J Electrochem Sc 6:4737–4738Google Scholar
  25. 25.
    Mobarak NN, Ahmad A, Abdullah MP, Ramli N, Rahman MYA (2013) Conductivity enhancement via chemical modification of chitosan based green polymer electrolyte. Electrochim Acta 92:61–167. doi: 10.1016/j.electacta.2012.12.126 CrossRefGoogle Scholar
  26. 26.
    Shukur MF (2015) Characterization of ion conducting solid biopolymer electrolytes based on starch-chitosan blend and application in electrochemical devices. University of Malaya, Malaysia, DissertationGoogle Scholar
  27. 27.
    Amran NNA, Manan NSA, Kadir MFZ (2016) The effect of LiCF3SO3 on the complexation with potato starch-chitosan blend polymer electrolytes. Ionics 1-12. doi: 10.1007/s11581-016-1684-3
  28. 28.
    Salleh NS, Aziz SB, Aspanut Z, Kadir MFZ (2016) Electrical impedance and conduction mechanism analysis of biopolymer electrolytes based on methyl cellulose doped with ammonium iodide. Ionics 1-11. doi: 10.1007/s11581-016-1731-0
  29. 29.
    Yin YJ, Yao KD, Cheng GX, Ma JB (1999) Properties of polyelectrolyte complex films of chitosan and gelatin. Polym Int 48:429–433. doi: 10.1002/(sici)1097-0126(199906)48:6<429::aid-pi160>;2-1 CrossRefGoogle Scholar
  30. 30.
    Shuhaimi NEA (2011) Ionic conductivity and related studies in methyl cellulose based polymer electrolytes and application in supercapacitors. Universiti Malaya, DissertationGoogle Scholar
  31. 31.
    Yusof YM, Shukur MF, Illias HA, Kadir MFZ (2014) Conductivity and electrical properties of corn starch–chitosan blend biopolymer electrolyte incorporated with ammonium iodide. Phys Scr 89:035701–035711. doi: 10.1088/0031-8949/89/03/035701 CrossRefGoogle Scholar
  32. 32.
    Huihua L, Raju A, Qipeng G, Benu A (2013) Preparation and characterization of glycerol plasticized (high-amylose) starch–chitosan films. J Food Eng 116:588–597CrossRefGoogle Scholar
  33. 33.
    Sim LN, Majid SR, Arof AK (2012) FTIR studies of PEMA/PVdF-HFP blend polymer electrolyte system incorporated with LiCF3SO3 salt. Vib Spectrosc 58:57–66. doi: 10.1016/j.vibspec.2011.11.005 CrossRefGoogle Scholar
  34. 34.
    Kadir MFZ, Aspanut Z, Majid SR, Arof AK (2011) FTIR studies of plasticized poly(vinyl alcohol)–chitosan blend doped with NH4NO3 polymer electrolyte membrane Spectrochim. Acta. Part A 78:1068–1074. doi: 10.1016/j.saa.2010.12.051 CrossRefGoogle Scholar
  35. 35.
    Mason RN, Hu L, Glatzhofer DT, Frech R (2010) Infrared spectroscopic and conductivity studies of poly(N-methylpropylenimine)/ lithium triflate electrolytes. Solid State Ionics 180:1626–1632. doi: 10.1016/j.ssi.2009.10.021 CrossRefGoogle Scholar
  36. 36.
    Rajendran S, Sivakumar M, Subadevi R (2004) Li-ion conduction of plasticized PVA solid polymer electrolytes complexed with various lithium salts. Solid State Ionics 167:335–339. doi: 10.1016/j.ssi.2004.01.020 CrossRefGoogle Scholar
  37. 37.
    Andrade JR, Raphael E, Pawlicka A (2009) Plasticized pectin-based gel electrolytes. Electrochim Acta 54:6479–6483. doi: 10.1016/j.electacta.2009.05.098 CrossRefGoogle Scholar
  38. 38.
    Gunawan R, Zhang D (2009) Thermal stability and kinetiks of decomposition of ammonium nitrate in the presence of pyrite. J Hazard Mater 165:751–7558CrossRefGoogle Scholar
  39. 39.
    MacCallum JR, Tomlin AS, Vincent CA (1986) An investigation of the conducting species in polymer electrolytesEur. Polym J 22:787–791. doi: 10.1016/0014-3057(86)90017-0 Google Scholar
  40. 40.
    Khiar AS, Arof AK (2010) Conductivity studies of starch-based polymer electrolytes. Ionics 16:123–129. doi: 10.1007/s11581-009-0356-y CrossRefGoogle Scholar
  41. 41.
    Ali AMM, Mohamed NS, Arof AK (1998) Polyethylene oxide (PEO)–ammonium sulfate ((NH4)2SO4) complexes and electrochemical cell performance. J Power Sources 74:135–141CrossRefGoogle Scholar
  42. 42.
    Hema M, Selvasekarapandian S, Arunkumar D, Sakunthala A, Nithya H (2009) FTIR, XRD and ac impedance spectroscopic study on PVA based polymer electrolyte doped with NH4X (X = Cl, Br, I). J Non-Cryst Solids 355:84–90. doi: 10.1016/j.jnoncrysol.2008.10.009 CrossRefGoogle Scholar
  43. 43.
    Kim HS, Shin JH, Moona SI, Kim KP (2003) Preparation of gel polymer electrolytes using PMMA interpenetrating polymeric network and their electrochemical performances. Electrochim Acta 48:1573–1578. doi: 10.1016/S0013-4686(03)00087-2 CrossRefGoogle Scholar
  44. 44.
    Miyamoto T, Shibayama K (1973) Free-volume model for ionic conductivity in polymers. J Appl Phys 44:5372. doi: 10.1063/1.1662158 CrossRefGoogle Scholar
  45. 45.
    Buraidah MH, Teo LP, Majid SR, Arof AK (2009) Ionic conductivity by correlated barrier hopping in NH4I doped chitosan solid electrolyte. Physica B 404:1373–1379. doi: 10.1016/j.physb.2008.12.027 CrossRefGoogle Scholar
  46. 46.
    Selvasekarapandian S, Baskaran R, Hema M (2005) Complex AC impedance, transference number and vibrational spectroscopy studies of proton conducting PVAc–NH4SCN polymer electrolytes. Physica B 357:412–419. doi: 10.1016/j.physb.2004.12.007 CrossRefGoogle Scholar
  47. 47.
    Khanmirzaei MH, Ramesh S (2013) Ionic transport and FTIR properties of lithium iodide doped biodegradable Rice starch based polymer electrolytes. Int J Electrochem Sci 8:9977–9991Google Scholar
  48. 48.
    Rice MJ, Roth WL (1972) Ionic transport in super ionic conductors: a theoretical model. J Solid State Chem 4:294–310. doi: 10.1016/0022-4596(72)90121-1 CrossRefGoogle Scholar
  49. 49.
    Yokota S, Ueno T, Kitaoka T, Wariishi H (2007) Molecular imaging of single cellulose chains aligned on a highly oriented pyrolytic graphite surface. Carbohydr Res 342:2593–2598. doi: 10.1016/j.carres.2007.08.018 CrossRefGoogle Scholar
  50. 50.
    Shuhaimi NEA, Teo LP, Majid SR, Arof AK (2010) Transport studies of NH4NO3 doped methylcellulose electrolyte. Synth Met 160:1040–1044. doi: 10.1016/j.synthmet.2010.02.023 CrossRefGoogle Scholar
  51. 51.
    Filho LSL, Seidl PR, Correia JCG, Cerqueira LCK (2000) Molecular modeling of reagents for flotation processes. Mineral Engineering 13:1495–1503CrossRefGoogle Scholar
  52. 52.
    Shukur MF, Ithnin R, Illias HA, Kadir MFZ (2013) Proton conducting polymer electrolyte based on plasticized chitosan-PEO blend and application in electrochemical devices. Opt Mater 35:1834–1841. doi: 10.1016/j.optmat.2013.03.004 CrossRefGoogle Scholar
  53. 53.
    Ahmad NH, Isa MIN (2015) Proton conducting solid polymer electrolytes based carboxymethyl cellulose doped ammonium chloride: ionic conductivity and transport studies. Int J Plast Technol 19:47–55. doi: 10.1007/s12588-015-9110-7 CrossRefGoogle Scholar
  54. 54.
    Shukur MF, Ithnin R, Kadir MFZ (2014) Electrical properties of proton conducting solid biopolymer electrolytes based on starch–chitosan blend. Ionics 20:977–999. doi: 10.1007/s11581-013-1033-8 CrossRefGoogle Scholar
  55. 55.
    Winie T, Ramesh S, Arof AK (2009) Studies on the structure and transport properties of hexanoyl chitosan-based polymer electrolytes. Physica B 404:4308–4311. doi: 10.1016/j.physb.2009.08.004 CrossRefGoogle Scholar
  56. 56.
    Mohamad AA, Arof AK (2006) Effect of temperature on the conductivity, structural, and morphology of PVA-based alkaline solid polymer electrolyte. Ionics 12:263–268. doi: 10.1007/s11581-006-0040-4 CrossRefGoogle Scholar
  57. 57.
    Saikia D, Pan YC, Kao HM (2012) Synthesis, multinuclear NMR characterization and dynamic property of organic–inorganic hybrid electrolyte membrane based on alkoxysilane and poly(oxyalkylene) diamine. Membranes 2:253–274. doi: 10.3390/membranes2020253 CrossRefGoogle Scholar
  58. 58.
    Gómez-Carracedo A, Alvarez-Lorenzo C, Gómez-Amoza JL, Concheiro A (2003) Chemical structure and glass transition temperature of non-ionic cellulose ethers DSC, TMDSC. J Therm Anal Calorim 73:587–596. doi: 10.1023/A:1025434314396 CrossRefGoogle Scholar
  59. 59.
    de Graaf RA, Karman AP, Janssen PBM (2003) Material properties and glass transition temperatures of different thermoplastic starches after extrusion processing. Starch/Stärke 55:80–86. doi: 10.1002/star.200390020 CrossRefGoogle Scholar
  60. 60.
    Mujaheddin JRL, Sheshappa Rai K, Guru GS Miscibility studies of agar-agar/starch blends using various techniques. IJRPC 2:2231–2781Google Scholar
  61. 61.
    Senna MM, El-Shahat HA, El-Naggar AWM (2011) Characterization of gamma irradiated plasticized starch/poly (vinyl alcohol) (PLST/PVA) blends and their application as protected edible materials. J Polym Res 18:763–771. doi: 10.1007/s10965-010-9473-6 CrossRefGoogle Scholar
  62. 62.
    Nyamweya N, Hoag SW (2000) Assessment of polymer-polymer gas chromatography, rheology, and spectroscopic techniques. Pharm Res 17:625–631. doi: 10.1023/A:1007585403781 CrossRefGoogle Scholar
  63. 63.
    Karthikeyan S, Sikkanthar S, Selvasekarapandian S, Arunkumar D, Nithya H, Kawamura J (2016) Structural, electrical and electrochemical properties of polyacrylonitrile-ammonium hexaflurophosphate polymer electrolyte system. J Polym Res 23:51. doi: 10.1007/s10965-016-0952-2 CrossRefGoogle Scholar
  64. 64.
    Du JF, Bai Y, Chu WY, Qiao LJ (2010) The structure and electric characters of proton-conducting chitosan membranes with various ammonium salts as Complexant, J. Polym. Sci., part B: Polym. Phys 48:880–885Google Scholar
  65. 65.
    Latha C, Venkatachalam K (2016) Synthesis and characterization of PVP: PVC: CH3COONH4. Int j trend res dev 3:2394–9333Google Scholar
  66. 66.
    Ramya CS, Selvasekarapandian S (2014) Spectroscopic studies on ion dynamics of PVP–NH4SCN polymer electrolytes. Ionics 20:1681–1686. doi: 10.1007/s11581-014-1130-3 CrossRefGoogle Scholar
  67. 67.
    Arof AK, Kufian MZ, Syukur MF, Aziz MF, Abdelrahman AE, Majid SR (2012) Electrical double layer capacitor using poly(methyl methacrylate)-C4BO8Li gel polymer electrolyte and carbonaceous material from shells of Mata kucing (Dimocarpus longan) fruit. Electrochim Acta 74:39–45. doi: 10.1016/j.electacta.2012.03.171 CrossRefGoogle Scholar
  68. 68.
    Woo HJ, Majid SR, Arof AK (2011) Transference number and structural analysis of proton conducting polymer electrolyte based on poly(ε-caprolactone). Mater Res Innov 15:S49–S54. doi: 10.1179/143307511X13031890747697 CrossRefGoogle Scholar
  69. 69.
    Bhargav PB, Mohan VM, Sharma AK, Rao VVRN (2009) Investigations on electrical properties of (PVA:NaF) polymer electrolytes for electrochemical cell applications. Curr Appl Phys 9:165–171. doi: 10.1016/j.cap.2008.01.006 CrossRefGoogle Scholar
  70. 70.
    Kumar M, Tiwari T, Srivastava N (2012) Electrical transport behaviour of bio-polymer electrolyte system: potato starch + ammonium iodide. Carbohydr Polym 88:54–60. doi: 10.1016/j.carbpol.2011.11.059 CrossRefGoogle Scholar
  71. 71.
    Kento S, Hiroki M, Atsumi M (2016) Effects of amino acids on solid-state phase transition of ammonium nitrate. J Therm Anal Calorim 1-6. doi: 10.1007/s10973-016-5416-8
  72. 72.
    Noor SAM, Ahmad A, Rahman MYA, Talib IA (2010) Solid polymeric electrolyte of poly(ethylene)oxide-50% epoxidized natural rubber-lithium triflate (PEO-ENR50-LiCF3SO3). Nat Sci 2:190–196. doi: 10.4236/ns.2010.23029 Google Scholar
  73. 73.
    Saikia D, Kumar A (2005) Ionic transport in P(VDF-HFP)–PMMA–LiCF3SO3–(PC + DEC)–SiO2 composite gel polymer electrolyte. Eur Polym J 41:563–568. doi: 10.1016/j.eurpolymj.2004.10.029 CrossRefGoogle Scholar
  74. 74.
    Danielle M, Yukyung J, Alexandra LH, Michael AW, Geoffrey WC et al (2016) Effect of monomer structure on ionic conductivity in a systematic set of polyester electrolytes. Solid State Ionics 289:118–124. doi: 10.1016/j.ssi.2016.02.020 CrossRefGoogle Scholar
  75. 75.
    Arof AK, Amirudin S, Yusof SZ, Noor IM (2014) A method based on impedance spectroscopy to determine transport properties of polymer electrolytes. Phys Chem Chem Phys 16:1856–1867. doi: 10.1039/c3cp53830c CrossRefGoogle Scholar
  76. 76.
    Sengwa RJ, Dhatarwal P, Choudhary S (2015) Effects of plasticizer and nanofiller on the dielectric dispersion and relaxation behaviour of polymer blend based solid polymer electrolytes. Curr App Phys 15:135–143. doi: 10.1016/j.cap.2014.12.003 CrossRefGoogle Scholar
  77. 77.
    Selvasekarapandian S, Chithra DR (1999) Dielectric studies on a solid electrolyte AgI-PbBr2-Ag2O-B2O3 mater. Chem Phys 58:90–93. doi: 10.1016/S0254-0584(98)00256-9 Google Scholar
  78. 78.
    Iqbal MZ, Rafiuddin S (2016) Structural, electrical conductivity and dielectric behavior of Na2SO4–LDT composite solid electrolyte. J Adv Res 7:135–141. doi: 10.1016/j.jare.2015.04.002 CrossRefGoogle Scholar
  79. 79.
    Chandra A (2013) Synthesis and dielectric studies of PEO-PVP blended solid polymer. Indian journal of Pure & Applied Physics 51:788–791Google Scholar
  80. 80.
    Gurusiddappa J, Madhuri W, Suvarna RP, Dasan KP (2016) Conductivity and dielectric behavior of polyethylene oxide-lithium perchlorate solid polymer electrolyte films. Indian J Adv in Chem Sci 4:14–19Google Scholar
  81. 81.
    Pradhan DK, Choudhary RNP, Samantaray BK (2009) Studies of dielectric and electrical properties of plasticized polymer nanocomposite electrolytes. Mater Chem Phys 115:557–561. doi: 10.1016/j.matchemphys.2009.01.008 CrossRefGoogle Scholar
  82. 82.
    Ramesh S, Arof AK (2001) Ionic conductivity studies of plasticized poly(vinyl chloride) polymer electrolytes. Mater Sci Eng B 85:11–15. doi: 10.1016/S0921-5107(01)00555-4 CrossRefGoogle Scholar
  83. 83.
    Khiar ASA, Puteh R, Arof AK (2006) Conductivity studies of a chitosan-based polymer electrolyte. Physica B 373:23–27. doi: 10.1016/j.physb.2005.10.104 CrossRefGoogle Scholar
  84. 84.
    Kobayashi T, Noguchi Y, Miyayama M (2005) Enhanced spontaneous polarization in super lattice structure Bi4Ti3O12 − BaBi4Ti4O15 single crystal. Appl Phys Lett 86:01290CrossRefGoogle Scholar
  85. 85.
    Aziz SB, Abidin ZHZ, Arof AK (2010) Influence of silver ion reduction on electrical modulus parameters of solid polymer electrolyte based on chitosansilver triflate electrolyte membrane. XPRESS Polymer Letters 4:300–310. doi: 10.3144/expresspolymlett.2010.38 CrossRefGoogle Scholar
  86. 86.
    Badapanda T, Harichandan RK, Nayak SS, Mishra A, Anwar S (2014) Frequency and temperature dependence behaviour of impedance, modulus and conductivity of BaBi4Ti4O15 aurivillius ceramic. Processing and application of ceramics 8:145–153. doi: 10.2298/PAC1403145B CrossRefGoogle Scholar
  87. 87.
    Hess M, Allegra G, He J, Horie K, Kim JS, Meille SV, Vohlída J (2013) Glossary of terms relating to thermal and thermo mechanical properties of polymers. Pure Appl Chem 85:1017–1046. doi: 10.1351/PAC-REC-12-03-02 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • M. H. Hamsan
    • 1
  • M. F. Shukur
    • 2
  • M. F. Z. Kadir
    • 2
    Email author
  1. 1.Institute of Graduate StudiesUniversity of MalayaKuala LumpurMalaysia
  2. 2.Center for Foundation Studies in ScienceUniversity of MalayaKuala LumpurMalaysia

Personalised recommendations