, Volume 23, Issue 2, pp 485–495 | Cite as

Formulation of water to ethanol ratio as extraction solvents of Ixora coccinea and Bougainvillea glabra and their effect on dye aggregation in relation to DSSC performance

  • Dk Nur Fhatihah Pg Damit
  • Kalpana Galappaththi
  • Andery Lim
  • Mohammad Iskandar Petra
  • Piyasiri Ekanayake
Original Paper


Natural dye sensitizers from Ixora coccinea (anthocyanin) and Bougainvillea glabra (betalain) flowers were prepared in five different ratios of ethanol to water (0, 30, 50, 70, and 90 % ethanol), and the effect of dye aggregation toward dye sensitized solar cell (DSSC) performance was evaluated. As the concentration of ethanol increases, the tendency of dye molecules to aggregate increased in Ixora dye extracts while no definite trend was observed in Bougainvillea dye extracts. The best DSSC performances of Ixora and Bougainvillea dyes exhibited by extracts in 70 % ethanol and 0 % ethanol are 0.58 ± 0.02 and 0.25 ± 0.02 %, respectively. Both high conversion efficiencies were ascribed to high electron density and low charge transfer resistance. From this study, it was revealed that the performances of DSSC could be affected by the formulation of dye aggregation on the TiO2 surface.


Anthocyanins Betalains Aggregation Natural dye-sensitized solar cells 



The authors thank Associate Professor Dr. Jose Hernandez Santos, Universiti Brunei Darussalam (UBD), for his assistance in cyclic voltammetry measurement. The authors also acknowledge Nur Hidayah binti Haji Annuar for her contribution in the experiment. The Brunei Research Council (BRC) Science and Technology Research Grant S&T 17 is acknowledged for the financial support.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Calogero G, Citro I, Crupi C, Marco GD (2014) Absorption spectra and photovoltaic characterization of chlorophyllins as sensitizers for dye-sensitized solar cells. Spectrochim Acta A Mol Biomol Spectrosc 132:477–484CrossRefGoogle Scholar
  2. 2.
    Yum JH, Baranoff E, Hardin BE, Hoke ET, McGehee MD, Nuesch F, Gratzel M, Nazeeruddin MK (2010) Phosphorescent energy relay dye for improved light harvesting response in liquid dye-sensitized solar cells. Energy & Environmental Science 3:434–437CrossRefGoogle Scholar
  3. 3.
    Kalowekamo J, Baker E (2009) Estimating the manufacturing cost of purely organic solar cells. Sol Energy 83:1224–1231CrossRefGoogle Scholar
  4. 4.
    Maabong K, Muiva CM, Monowe P, Sathiaraj TS, Hopkins M, Nguyen L, Malungwa K, Thobega M (2015) Natural pigments as photosensitizers for dye-sensitized solar cells with TiO2 thin films. International Journal of Renewable Energy Research 5:54–60Google Scholar
  5. 5.
    Torchani A, Saadaoui S, Gharbi R, Fathallah M (2015) Sensitized solar cells based on natural dyes. Curr Appl Phys 15:307–312CrossRefGoogle Scholar
  6. 6.
    Li B, Huang L, Ren N, Zhou M (2014) Titanium dioxide-coated fluorine-doped tin oxide thin films for improving overall photoelectric property. Appl Surf Sci 290:80–85CrossRefGoogle Scholar
  7. 7.
    S. Ito, (2011) Investigation of dyes for dye-sensitized solar cells: ruthenium-complex dyes, metal-free dyes, metal-complex porphyrin dyes and natural dyes, solar cells—dye-sensitized devices, InTech.Google Scholar
  8. 8.
    Basheer B, Mathew D, George BK, Reghunadhan Nair CP (2014) An overview on the spectrum of sensitizers: the heart of dye sensitized solar cells. Sol Energy 108:479–507CrossRefGoogle Scholar
  9. 9.
    Lund T, Nguyen PT, Tran HM, Pechy P, Zakeeruddin SM, Gratzel M (2014) Thermal stability of the DSC ruthenium dye C106 in robust electrolytes. Sol Energy 110:96–104CrossRefGoogle Scholar
  10. 10.
    Yusoff A, Kumara NTRN, Lim A, Ekanayake P, Tennakoon KU (2014) Impacts of temperature on the stability of tropical plant pigments as sensitizers for dye sensitized solar cells. Journal of Biophysics 2014:8CrossRefGoogle Scholar
  11. 11.
    Zhou H, Wu L, Gao Y, Ma T (2011) Dye-sensitized solar cells using 20 natural dyes as sensitizers. J Photochem Photobiol A Chem 219:188–194CrossRefGoogle Scholar
  12. 12.
    Aduloju KA, Shitta MB, Justus S (2011) Effect of extracting solvents on the stabilty and performances of dye-sensitized solar cell prepared using extract from Lawsonia inermis. Fundamental J Modern Physics 1:261–268Google Scholar
  13. 13.
    Calogero G, Di Marco G, Cazzanti S, Caramori S, Argazzi R, Di Carlo AD, Bignozzi CA (2010) Efficient dye-sensitized solar cells using red turnip and purple wild sicilian prickly pear fruits. International Journal of Molecular Science 11:254–267CrossRefGoogle Scholar
  14. 14.
    Calogero G, Di Marco G (2008) Red Sicilian orange and purple eggplant fruits as natural sensitizers for dye-sensitized solar cells. Solar Energy and Mater Solar Cells 92:1341–1346CrossRefGoogle Scholar
  15. 15.
    Calogero G, Yumb JH, Sinopoli A, Marco GD, Gratzel M, Nazeeruddin MK (2012) Anthocyanins and betalains as light-harvesting pigments for dye-sensitized solar cells. Sol Energy 86:1563–1575CrossRefGoogle Scholar
  16. 16.
    Quin C, Clark A (2007) DFT characterization of the optical and redox properties of natural pigments relevant to dye-sensitized solar cells. Chem Phys Lett 438:26–30CrossRefGoogle Scholar
  17. 17.
    Hernandez-Martinez AR, Estevez M, Vargas S, Quintanilla F, Rodriguez R (2011) New dye-sensitized solar cells obtained from extracted bracts of bougainvillea glabra and Spectabilis betalain pigments by different purification processes. Int J Mol Sci 12:5565–5576CrossRefGoogle Scholar
  18. 18.
    Kunzler J, Samha L, Zhang R, Samha H (2011) Investigation of the effect of concentration on molecular aggregation of cyanine dyes in aqueous solution. American Journal of Undergraduate Research 9:1–4Google Scholar
  19. 19.
    Tatay S, Haque SA, O’Regan B, Durrant JR, Verhees WJH, Kroon JM, Vidal-Ferran A, Gavina P, Palomares E (2007) Kinetic competition in liquid electrolyte and solid-state cyanine dye sensitized solar cells. J Mater Chem 17:3037–3044CrossRefGoogle Scholar
  20. 20.
    Lim A, Damit DNFP, Ekanayake P (2015) Tailoring of extraction solvent of Ixora Coccinea flower to enhance charge transport properties in dye sensitized solar cells. Ionics 21:2897–2904CrossRefGoogle Scholar
  21. 21.
    Brás R, Gomes A, Ferra MIA, Pinheiro HM, Gonçalves IC (2005) Monoazo and diazo dye decolourisation studies in a methanogenic UASB reactor. J Biotechnol 115:57–66CrossRefGoogle Scholar
  22. 22.
    Deshpande A, Jadge D, Dhawale S, Patrakar R, Gadgul A (2010) Flower extract of Ixora Coccinea as a natural indicator in Acid Base titration. J Pharm Res 3:2512–2513Google Scholar
  23. 23.
    Marana JP, Priyab B, Nivethaa CV (2015) Optimization of ultrasound-assisted extraction of natural pigmentsfrom Bougainvillea Glabra flowers. Ind Crop Prod 63:182–189CrossRefGoogle Scholar
  24. 24.
    Kumara NTRN, Ekanayake P, Lim A, Iskandar M, Ming LC (2013) Study of the enhancement of cell performance of dye sensitized solar cells sensitized with Nephelium lappaceum (F: Sapindaceae). Journal of Solar Energy Engineering 135:031014–031014CrossRefGoogle Scholar
  25. 25.
    Tonutare T, Moor U, Szajdak L (2014) Strawberry anthocyanin determination by Ph differential spectroscopic method – how to get true results?, Acta Scientiarum Polonrum. Hortorum Cultus 13:35–47Google Scholar
  26. 26.
    Maran JP, Priya B, Nivetha CV (2015) Optimization of ultrasound-assisted extraction of natural pigments from Bougainvillea Glabra flowers. Ind Crop Prod 63:182–189CrossRefGoogle Scholar
  27. 27.
    Lim A, Kumara NTRN, Tan AL, Mirza AH, Chandrakanthi RLN, Petra MI, Ming LC, Senadeera GKR, Ekanayake P (2015) Potential natural sensitizers extracted from the skin of Canarium odontophyllum fruits for dye-sensitized solar cells. Spectrochim Acta A Mol Biomol Spectrosc 138:596–602CrossRefGoogle Scholar
  28. 28.
    Nath NCD, Lee HJ, Choi WY, Lee JJ (2013) Electrochemical approach to enhance the open-circuit voltage (Voc) of dye-sensitized solar cells (DSSCs). Electrochim Acta 109:39–45CrossRefGoogle Scholar
  29. 29.
    M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M.J. Bearpark, J. Heyd, E.N. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A.P. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N.J. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, (2009) Gaussian 09, in, Gaussian, Inc., Wallingford, CT, USA, .Google Scholar
  30. 30.
    Becke AD (1993) A new mixing of Hartree–Fock and local density-functional theories. J Chem Phys 98:1372–1377CrossRefGoogle Scholar
  31. 31.
    Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789CrossRefGoogle Scholar
  32. 32.
    Miehlich B, Savin A, Stoll H, Preuss H (1989) Results obtained with the correlation energy density functionals of becke and lee. Yang and Parr, Chemical Physics Letters 157:200–206CrossRefGoogle Scholar
  33. 33.
    Wongsagonsup R, Shobsngob S, Oonkhanond B, Varavinit S (2005) Zeta potential and pasting properties of phosphorylated or crosslinked rice starches. Stärke 57:32–37CrossRefGoogle Scholar
  34. 34.
    Chu Y, Meisen P (August 2011) Review and comparison of different solar energy technologies. Global Energy Network Institute (GENI):1–56Google Scholar
  35. 35.
    Nachimuthu S, Chen W-C, Leggesse EG, Jiang J-C (2016) First principles study of organic sensitizers for dye sensitized solar cells: effects of anchoring groups on optoelectronic properties and dye aggregation. Phys Chem Chem Phys 18:1071–1081CrossRefGoogle Scholar
  36. 36.
    Das S, Thanulingam TL, Thomas KG, Kamat PV, George MV (1993) Photochemistry of squaraine dyes. 5. Aggregation of bis (2,4-dihydroxyphenyl) squaraine and bis (2,4,6-trihydroxyphenyl) squaraine and their photodissociation in acetonitrile solutions. J Phys Chem 97:13620–13624CrossRefGoogle Scholar
  37. 37.
    Dumbrava A, Enache I, Oprea CI, Georgescu A, Girtu MA Toward a more efficient utilisation of betalains as pigments for dye sensitized solar cells. Digest Journal of Nanomaterials and Biostructures 7:339–351Google Scholar
  38. 38.
    Xu H, Tao X, Wang D-T, Zheng Y-Z, Chen J-F (2010) Enhanced efficiency in dye-sensitized solar cells based on TiO2 nanocrystal/nanotube double-layered films. Electrochim Acta 55:2280–2285CrossRefGoogle Scholar
  39. 39.
    Daeneke T, Mozer AJ, Uemura Y, Makuta S, Fekete M, Tachibana Y, Koumura N, Bach U, Spiccia L (2012) Dye regeneration kinetics in dye-sensitized solar cells. J Am Chem Soc 134:16925–16928CrossRefGoogle Scholar
  40. 40.
    Ekanayake P, Menge H, Shchneider H, Ries ME, Brereton MG, Klein PG (March 2000) Susceptibility effect of carbon black filler on the deuterium NMR line shape from poly (butadiene) networks. Macromolecules 33:1807–1812CrossRefGoogle Scholar
  41. 41.
    Würfel P (2009) Physics of solar cells, 2 edn. Wiley-VCH, BerlinGoogle Scholar
  42. 42.
    Smestad GP, Spiekermann S, Kowalik J, Grant CD, Schwartzberg AM, Zhang J, Tolbert LM, Moons E (2003) A technique to compare polythiophene solid-state dye sensitized TiO2 solar cells to liquid junction devices. Sol Energy Mater Sol Cells 76:85–105CrossRefGoogle Scholar
  43. 43.
    Misra A, Kumar P, Srivastava R, Dhawan SK, Kamalasanan MN, Chandra S (2005) Electrochemical and optical studies of conjugated polymers for three primary colours. Indian Journal of Pure and Applied Physics 43:921–925Google Scholar
  44. 44.
    Tauc J, Grigorovici R, Vancu A (1966) Optical properties and electronic structure of amorphous germanium. Phys Status Solidi B 15:627–637CrossRefGoogle Scholar
  45. 45.
    Adachi M, Sakamoto M, Jiu J, Ogata Y, Isoda S (2006) Determination of parameters of electron transport in dye-sensitized solar cells using electrochemical impedance spectroscopy. J Phys Chem B 110:13872–13880CrossRefGoogle Scholar
  46. 46.
    Wang H, Wang B, Yu J, Hu Y, Xia C, Zhang J, Liu R (2015) Significant enhancement of power conversion efficiency for dye sensitized solar cell using 1D/3D network nanostructures as photoanodes. Science Report 5:1–9Google Scholar
  47. 47.
    Guliania R, Jainb A, Kapoora A (2012) Exact analytical analysis of dye-sensitized solar cell: improved method and comparative study. The Open Renewable Energy Journal 5:49–60CrossRefGoogle Scholar
  48. 48.
    Kern R, Sastrawan R, Ferber J, Stangl R, Luther J (2002) Modeling and interpretation of electrical impedance spectra of dye solar cells operated under open-circuit conditions. Electrochim Acta 47:4213–4225CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Dk Nur Fhatihah Pg Damit
    • 1
  • Kalpana Galappaththi
    • 2
  • Andery Lim
    • 1
    • 2
  • Mohammad Iskandar Petra
    • 3
  • Piyasiri Ekanayake
    • 1
    • 2
  1. 1.Centre for Advanced Material and Energy SciencesUniversiti Brunei DarussalamNegaraBrunei Darussalam
  2. 2.Physical and Geological Sciences ProgrammeUniversiti Brunei DarussalamNegaraBrunei Darussalam
  3. 3.Faculty of Integrated TechnologyUniversiti Brunei DarussalamNegaraBrunei Darussalam

Personalised recommendations