, Volume 22, Issue 12, pp 2263–2271 | Cite as

Urchin-like α-MnO2 formed by nanoneedles for high-performance lithium batteries

  • A. M. Hashem
  • A. E. Abdel-Ghany
  • R. El-Tawil
  • A. Bhaskar
  • B. Hunzinger
  • H. Ehrenberg
  • A. Mauger
  • C. M. JulienEmail author
Original Paper


MnO2 nanoneedles (NNs) were synthesized by sol-gel assisted by a redox reaction between ascorbic acid and KMnO4. X-ray powder diffraction (XRD), thermogravimetric analysis (TGA), Raman, far-infrared spectroscopy, and magnetic measurements confirm the tunnel structure of the tetragonal α-MnO2 phase. The MnO2 NNs prepared by sol-gel at moderate temperature (T ≈ 350 °C) aggregate with an urchin-like morphology observed by scanning electron (SEM) and high-resolution transmission electron (TEM) microscopy. Electrochemical investigations show an outstanding initial specific capacity ca. 230 mAh g−1 and 45 % capacity retention at 100th cycle was obtained for these MnO2 nanoneedles.


Manganese dioxide Nanoneedles Lithium batteries 



The authors are grateful to Dr. Björn Schwarz for his kind help in measuring the magnetic properties and Mr. René Veillette for his assistance in collecting the HRTEM images and the EDX spectrum. Financial support from the Deutsche Forschungsgemeinschaft (DFG) within the Research Collaborative Centre 595 on “Electrical Fatigue in Functional Materials” is gratefully acknowledged.


  1. 1.
    Wei W, Cui X, Chen W, Ivey DG (2011) Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem Soc Rev 40:1697–1721CrossRefGoogle Scholar
  2. 2.
    Minakshi M, Nallathamby K, Mitchell DRG (2009) Electrochemical characterization of an aqueous lithium rechargeable battery: the effect of CeO2 additions to the MnO2 cathode. J Alloys Compd 479:87–90CrossRefGoogle Scholar
  3. 3.
    Song K, Jung J, Heo YU, Lee YC, Cho K, Kang YM (2013) α-MnO2 nanowire catalysts with ultra-high capacity and extremely low overpotential in lithium-air batteries through tailored surface arrangement. Phys Chem Chem Phys 15:20075–20079CrossRefGoogle Scholar
  4. 4.
    Ding YS, Shen XF, Sithambaram S, Gomez S, Kumar R, Crisostomo VMB, Suib SL, Aindow M (2005) Synthesis and catalytic activity of cryptomelane-type manganese dioxide nanomaterials produced by a novel solvent-free method. Chem Mater 17:5382–5389CrossRefGoogle Scholar
  5. 5.
    DeGuzman RN, Awaluddin A, Shen YF, Tian ZR, Suib SL, Ching S, O’Young CL (1995) Electrical resistivity measurements on manganese oxides with layer and tunnel structures: birnessites, todorokites and cryptomelanes. Chem Mater 7:1286–1292CrossRefGoogle Scholar
  6. 6.
    Solomon B, Wu J, Thomsen E, Yang J, Zhou XD (2012) Defect chemistry and transport properties in MnO2 nanowires. ECS PRIME Conf Honolulu, Abstract MA2012-02 1960Google Scholar
  7. 7.
    Jin L, LP X, Morein C, Chen CH, Lai M, Dharmarathna S, Dobley A, Suib SL (2010) Adv Funct Mater 20:3373–3382CrossRefGoogle Scholar
  8. 8.
    Li JX, Wang N, Zhao Y, Ding YH, Guan LH (2011) Electrochem Commun 13:698–700CrossRefGoogle Scholar
  9. 9.
    Cao Y, Wei Z, He J, Zang J, Zhang Q, Zheng M, Dong Q (2012) Energy Environ Sci 5:9765–9768CrossRefGoogle Scholar
  10. 10.
    Jiang H, Zhao T, Ma J, Yan C, Li CZ (2011) Ultrafine manganese dioxide nanowire network for high performance supercapacitors. Chem Commun 47:1264–1266CrossRefGoogle Scholar
  11. 11.
    Zhang JT, Chu W, Jiang JW, Zhao XS (2011) Synthesis characterization and capacitive performance of hydrous manganese dioxide nanostructures. Nanotechnology 12:125703CrossRefGoogle Scholar
  12. 12.
    Chen Y, Hong Y, Ma Y, Li J (2010) Synthesis and formation mechanism of urchin-like nano/micro hybrid α-MnO2. J Alloys Compd 490:331–335CrossRefGoogle Scholar
  13. 13.
    Huang M, Li F, Dong F, Zhang YX, Zhang LL (2015) MnO2-based nanostructures for high-performance supercapacitors. J Mater Chem A 3:21380–21423CrossRefGoogle Scholar
  14. 14.
    Wu C, Xie Y, Wang D, Yang J, Li T (2003) Selected-control hydrothermal synthesis ofγ-MnO2 3D nanostructures. J Phys Chem B 107:13583–13587CrossRefGoogle Scholar
  15. 15.
    Subramanian V, Zhu H, Vajtai R, Ajayan PM, Wei B (2005) Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures. J Phys Chem B 109:20207–20214CrossRefGoogle Scholar
  16. 16.
    Li B, Rong G, Xie Y, Huang L, Feng C (2006) Low-temperature synthesis of α-MnO2 hollow urchins and their application in rechargeable Li+ batteries. Inorg Chem 45:6404CrossRefGoogle Scholar
  17. 17.
    Li WN, Yuan J, Shen XF, Gomez-Mower S, Xu LP, Sithambaram S, Aindow M, Suib SL (2006) Hydrothermal synthesis of structure- and shape-controlled manganese oxide octahedral molecular sieve nanomaterials. Adv Funct Mater 16:1247–1253CrossRefGoogle Scholar
  18. 18.
    Zhang Z, Mu J (2007) Hydrothermal synthesis of γ-MnOOH nanowires and α-MnO2 sea urchin-like clusters. Solid State Commun 141:427–430CrossRefGoogle Scholar
  19. 19.
    Xu M, Kong L, Zhou W, Li H (2007) Hydrothermal synthesis and pseudocapacitance properties of α-MnO2 hollow spheres and hollow urchins. J Phys Chem C 111:19141–19147CrossRefGoogle Scholar
  20. 20.
    Song XC, Zhao Y, Zheng YF (2007) Synthesis of MnO2 nanostructures with sea urchin shapes by a sodium dodecyl sulfate-assisted hydrothermal process. Cryst Growth Des 7:159–162CrossRefGoogle Scholar
  21. 21.
    Ni J, Lu W, Zhang L, Yue B, Shang X, Lv Y (2009) Low-temperature synthesis of monodisperse 3D manganese oxide nanoflowers and their pseudocapacitance properties. J Phys Chem C 113:54–60CrossRefGoogle Scholar
  22. 22.
    Tang N, Tian X, Yang C, Pi Z (2009) Facile synthesis of α-MnO2 nanostructures for supercapacitors. Mater Res Bull 44:2062–2067CrossRefGoogle Scholar
  23. 23.
    Yu P, Zhang X, Wang D, Wang L, Ma Y (2009) Shape-controlled synthesis of 3D hierarchical MnO2 nanostrucvtures for electrochemical supercapacitors. Cryst Growth Des 9:528–533CrossRefGoogle Scholar
  24. 24.
    Zeng JH, Wang YF, Yang Y, Zhang J (2010) Synthesis of sea-urchin shaped γ-MnO2 nanostructures and their application in lithium batteries. J Mater Chem 20:10915–10918CrossRefGoogle Scholar
  25. 25.
    He X, Yang M, Ni P, Li Y, Liu ZH (2010) Rapid synthesis of hollow structured MnO2 microspheres and their capacitance. Colloids Surf A Physicochem Eng Asp 363:64–70CrossRefGoogle Scholar
  26. 26.
    Wang Y, Liu H, Bao M, Li B, Su H, Wen Y, Wang F (2011) Structural-controlled synthesis of manganese oxide nanostructures and their electrochemical properties. J Alloys Compd 509:8306–8312CrossRefGoogle Scholar
  27. 27.
    Zhou M, Zhang X, Wang L, Wei J, Wang L, Zhu K, Feng B (2011) Growth process and microwave absorption properties of nanostructured γ-MnO2 urchins. Mater Chem Phys 130:1191–1194CrossRefGoogle Scholar
  28. 28.
    Zhou M, Zhang X, Wei J, Zhao S, Wang L, Feng B (2011) Morphology-controlled synthesis and novel microwave absorption properties of hollow urchinlike α-MnO2 nanostructures. J Phys Chem C 115:1398–1402CrossRefGoogle Scholar
  29. 29.
    Wang M, Tan W, Feng X, Koopal LK, Liu M, Liu F (2012) One-step synthesis of sea urchin-like α-MnO2 using KIO4 as the oxidant and its oxidation of arsenite. Mater Lett 77:60–62CrossRefGoogle Scholar
  30. 30.
    Yang W, Gao Z, Wang J, Wang B, Liu Q, Li Z, Mann T, Yang P, Zhang M, Liu L (2012) Synthesis of reduced graphene nanosheet/urchin-like manganese dioxide composite and high performance as supercapacitor electrode. Electrochim Acta 69:112–119CrossRefGoogle Scholar
  31. 31.
    Jung KN, Riaz A, Lee SB, Lim TH, Park SJ, Song RH, Yoon S, Shin KH, Lee JW (2013) Urchin-like α-MnO2 decorated with Au and Pd as a bi-functional catalyst for rechargeable lithium-oxygen batteries. J Power Sources 244:328–335CrossRefGoogle Scholar
  32. 32.
    Ma J, Cheng Q, Pavlinek V, Saha P, Li C (2013) Morphology-controllable synthesis of MnO2 hollow nanospheres and their supercapacitive performance. New J Chem 37:722–728CrossRefGoogle Scholar
  33. 33.
    Benhaddad L, Bazin C, Makhloufi L, Messaoudi B, Pillier F, Rahmouni K, Takenouti H (2014) Effect of synthesis duration on the morphological and structural modification of the sea urchin-nanostructured γ-MnO2 and study of its electrochemical reactivity in alkaline medium. J Solid State Electrochem 18:2111–2121CrossRefGoogle Scholar
  34. 34.
    Feng L, Xuan Z, Zhao H, Bai Y, Guo J, Su CW, Chen X (2014) MnO2 prepared by hydrothermal method and electrochemical performance as anode for lithium-ion battery. Nanoscale Res Lett 9:290CrossRefGoogle Scholar
  35. 35.
    Zhao S, Liu T, Shi D, Zhang Y, Zeng W, Li T, Miao B (2015) Hydrothermal synthesis of urchin-like MnO2 nanostructures and its electrochemical character for supercapacitor. Appl Surf Sci 351:862–868CrossRefGoogle Scholar
  36. 36.
    Zhang JH, Feng JY, Zhu T, Liu ZL, Li QY, Chen SZ, Xu CW (2016) Pd-doped urchin-like MnO2-carbon sphere three-dimensional (3D) material for oxygen evolution reaction. Electrochim Acta 196:661–669CrossRefGoogle Scholar
  37. 37.
    He W, Yang W, Wang C, Deng X, Liu B, Xu X (2016) Morphology-controlled syntheses of α-MnO2 for electrochemical energy storage. Phys Chem Chem Phys 18:15235–15243CrossRefGoogle Scholar
  38. 38.
    Feng L, Wang R, Shi Y, Wang H, Yang J, Zhu J, Chen Y, Yuan N (2016) Electrochemical study of hydrogen peroxide detection on MnO2 micromaterials. Int J Electrochem Sci 11:5962–5972CrossRefGoogle Scholar
  39. 39.
    Kharisov BI, Kharissova OV, Ortiz-Mendez U Handbook of Less-Common nanostructures, chap 8. CRC Press, Boca Raton, pp. pp. 262–pp. 283Google Scholar
  40. 40.
    Yang JB, Zhou XD, James WJ, Malik SK, Wang CS (2004) Growth and magnetic properties of MnO2-δ nanowire microspheres. Appl Phys Lett 85:3160–3162CrossRefGoogle Scholar
  41. 41.
    Kim SH, Kim SJ, Oh SM (1999) Preparation of layered MnO2 via thermal decomposition of KMnO4 and its electrochemical characterizations. Chem Mater 11:557–563CrossRefGoogle Scholar
  42. 42.
    Witzemann EJ (1915) A new method of preparation and some interesting transformations of colloidal manganese dioxide. J Am Chem Soc 37:1079–1091CrossRefGoogle Scholar
  43. 43.
    Ching S, Landrigan JA, Jorgensen ML, Duan N, Suib SL, O’Young CL (1995) Sol-gel synthesis of birnessite from KMnO4 and simple sugars. Chem Mater 7:1604–1606CrossRefGoogle Scholar
  44. 44.
    Bach S, Henry M, Baffier N, Livage J (1990) Sol-gel synthesis of manganese oxides. J Solid State Chem 88:325–333CrossRefGoogle Scholar
  45. 45.
    Hashemzadeh F, Motlagh MK, Maghsoudipour A (2009) A comparative study of hydrothermal and sol-gel methods in the synthesis of MnO2 nanostructures. J Sol-Gel Technol 51:169–174CrossRefGoogle Scholar
  46. 46.
    Wang X, Wang X, Huang W, Sebastian PJ, Gamboa S (2005) Sol-gel template synthesis of highly ordered MnO2 nanowire arrays. J Power Sources 140:211–215CrossRefGoogle Scholar
  47. 47.
    Ching S, Welch EJ, Hughes SM, Bahadoor ABF, Suib SL (2002) Nonaqueous sol-gel syntheses of microporous manganese oxides. Chem Mater 14:1292–1299CrossRefGoogle Scholar
  48. 48.
    Ching S, Petrovay DJ, Jorgensen ML, Suib SL (1997) Sol-gel synthesis of layered birnessite-manganese oxides. Inorg Chem 36:883–890CrossRefGoogle Scholar
  49. 49.
    Ching S, Roark JL, Duan N, Suib SL (1997) Sol-gel route to the tunneled manganese oxide cryptomelane. Chem Mater 9:750–754CrossRefGoogle Scholar
  50. 50.
    Chen S, Zhu J, Han Q, Zheng Z, Yang Y, Wang X (2009) Shape-controlled synthesis of one-dimensional MnO2 via a facile quick-precipitation procedure and its electrochemical properties. Cryst Growth Des 9:4356–4361CrossRefGoogle Scholar
  51. 51.
    Song H, Li X, Zhang Y, Wang H, Li H, Huang J (2014) A nanocomposite of needle-like MnO2 nanowires arrays sandwiched between graphene nanosheets for supercapacitors. Ceram Int 40:1251–1255CrossRefGoogle Scholar
  52. 52.
    Deng D, Kim BS, Gopiraman M, Kim IS (2015) Needle-like MnO2/activated carbon nanocomposites derived from human hair as versatile electrode materials for supercapacitors. RSC Adv 5:81492–81498CrossRefGoogle Scholar
  53. 53.
    Liu J, Son YC, Cai J, Shen X, Suib SL, Aindow M (2004) Size control, metal substitution and catalytic application of cryptomelane nanomaterials prepared using cross-linking reagents. Chem Mater 16:276–285CrossRefGoogle Scholar
  54. 54.
    Portehault D, Cassaignon S, Baudrin E, Jolivet JP (2007) Morphology control of cryptomelane type MnO2 nanowires by soft chemistry, growth mechanisms in aqueous medium. Chem Mater 19:5410–5417CrossRefGoogle Scholar
  55. 55.
    Hashem AM, Abdel-Latif AM, Abuzeid HM, Abbas HM, Ehrenberg H, Farag RS, Mauger A, Julien CM (2011) Improvement of the electrochemical performance of nanosized α-MnO2 used as cathode material for Li-batteries by Sn-doping. J Alloys Compd 509:9669–9674CrossRefGoogle Scholar
  56. 56.
    Benaissa M, Jose-Yacaman M, Xiao TD, Strutt PR (1997) Microstructural study of hollandite-type MnO2 nano-fibers. Appl Phys Lett 70:2120–2122CrossRefGoogle Scholar
  57. 57.
    Strobel P, Darie C, Thiery F, Ibarra-Palos A, Bacia M, Proux O, Soupart JB (2006) Electrochemical lithium intercalation in nanosized manganese oxides. J Phys Chem Solids 67:1258–1264CrossRefGoogle Scholar
  58. 58.
    Cheng F, Zhao J, Song W, Li C, Ma H, Chen J, Shen P (2006) Facile controlled synthesis of MnO2 nanostructures of novel shapes and their application in batteries. Inorg Chem 45:2038–2044CrossRefGoogle Scholar
  59. 59.
    Yang Y, Xiao L, Zhao Y, Wang F (2008) Hydrothermal synthesis and electrochemical characterization of α-MnO2 nanorods as cathode material for lithium batteries. Int J Electrochem Sci 3:67–74Google Scholar
  60. 60.
    Li W, Cui X, Zeng R, Du G, Sun Z, Zheng R, Ringer SP, Dou SX (2015) Performance modulation of α-MnO2 nanowires by crystal facet engineering. Sci Rep 5:8987CrossRefGoogle Scholar
  61. 61.
    Yuan Y, Nie A, Odegard CM, Xu R, Zhou D, Santhanogopalan S, He K, Asayesh-Ardakani H, Meng DD, Klie RF, Johnson C, Lu J, Shahbazian-Yassar R (2015) Asynchronous crystal cell expansion during lithiation of K+-stabilized α-MnO2. Nano Lett 15:2998–3007CrossRefGoogle Scholar
  62. 62.
    Yuan Y, Wood SM, He K, Yao W, Tompsett D, Lu J, Nie A, Islam MS, Shahbazian-Yassar R (2016) Atomistic insights into the oriented attachment of tunnel-based oxide nanostructures. ACS Nano 10:539–548CrossRefGoogle Scholar
  63. 63.
    Momeni K, Levitas VI, Wareen JA (2015) The strong influence of internal stresses on the nucleation of a nanosized, deeply undercooled melt at a solid-solid phase interface. Nano Lett 15:2298–3007CrossRefGoogle Scholar
  64. 64.
    Li L, Pan Y, Chen L, Li G (2007) One-dimensional α-MnO2 trapping chemistry of tunnel structures, structural stability and magnetic transitions. J Solid State Chem 180:2896–2904CrossRefGoogle Scholar
  65. 65.
    Liu B, Thomas PS, Williams RP, Donne SW (2005) Thermal characterization of chemically reduced electrolytic manganese dioxide. J Therm Anal Calorim 80:625–629CrossRefGoogle Scholar
  66. 66.
    Julien CM, Massot M, Poinsignon C (2004) Lattice vibrations of manganese oxides: part I. Periodic structures. Spectrochim Acta A 60:689–700CrossRefGoogle Scholar
  67. 67.
    Gao T, Fjellvag H, Norby P (2009) A comparison study on Raman scattering properties of α- and β-MnO2. Anal Chim Acta 648:235–239CrossRefGoogle Scholar
  68. 68.
    Julien CM, Ait-Salah A, Mauger A, Gendron F (2006) Magnetic properties of lithium intercalation compounds. Ionics 12:21–32CrossRefGoogle Scholar
  69. 69.
    Johnson CS, Dees DW, Mansuetto MF, Thackeray MM, Vissers DR, Argyriou D, Loong CK, Christensen L (1997) Structural and electrochemical studies of α-manganese dioxide (α-MnO2). J Power Sources 68:570–577CrossRefGoogle Scholar
  70. 70.
    Fenq BR, Kanoh H, Oei K, Tani M, Nakacho Y (1994) Synthesis of hollandite-type manganese dioxide with H+ form for lithium rechargeable battery. J Electrochem Soc 141:L135–L136CrossRefGoogle Scholar
  71. 71.
    Tompsett DA, Islam MS (2013) Electrochemistry of hollandite α-MnO2: Li-ion and Na-ion insertion and Li2O incorporation. Chem Mater 25:2515–2526CrossRefGoogle Scholar
  72. 72.
    Thackeray MM (1997) Manganese oxides for lithium batteries. Prog Solid State Chem 25:1–71CrossRefGoogle Scholar
  73. 73.
    Johnson CS, Thackeray MM (2001) Amonia- and lithia-doped manganese dioxide for 3 V lithium batteries. J Power Sources 97-98:437–442CrossRefGoogle Scholar

Copyright information

© European Union 2016

Authors and Affiliations

  • A. M. Hashem
    • 1
    • 2
  • A. E. Abdel-Ghany
    • 1
    • 3
  • R. El-Tawil
    • 1
  • A. Bhaskar
    • 2
  • B. Hunzinger
    • 2
  • H. Ehrenberg
    • 2
  • A. Mauger
    • 4
  • C. M. Julien
    • 3
    Email author
  1. 1.National Research Centre, Inorganic Chemistry DepartmentDokki-GizaEgypt
  2. 2.Karlsruhe Institute of Technology (KIT)Institute for Applied Materials-Energy Storage Systems (IAM- ESS)Eggenstein-LeopoldshafenGermany
  3. 3.Pierre et Marie Curie-Paris6, Physicochimie des Electrolytes et Nanosystèmes Interfaciaux (PHENIX)Sorbonne Universités, UPMC Univ.ParisFrance
  4. 4.Sorbonne UniversitésUPMC Univ. Pierre et Marie Curie-Paris6, Institut de Minéralogie et Physique de la Matière Condensée (IMPMC)Paris cedex 05France

Personalised recommendations