Advertisement

Ionics

, Volume 22, Issue 8, pp 1281–1289 | Cite as

Investigation on lithium ion conductivity and structural stability of yttrium-substituted Li7La3Zr2O12

  • C. Deviannapoorani
  • Lakshmi S. Shankar
  • S. Ramakumar
  • Ramaswamy MuruganEmail author
Original Paper

Abstract

Advanced Li-air battery architecture demands a high Li+ conductive solid electrolyte membrane that is electrochemically stable against metallic lithium and aqueous electrolyte. In this work, an investigation has been carried out on the microstructure, Li+ conduction behaviour and structural stability of Li7La3-x Y x Zr2O12 (x = 0.125, 0.25 and 0.50) prepared by conventional solid-state reaction technique. The phase analysis of Li7La3-x Y x Zr2O12 (x = 0.125, 0.25 and 0.50) sintered at 1200 °C by powder X-ray diffraction (PXRD) and Raman confirms the formation of high Li+ conductive cubic phase (\( Ia\overline{3}d \)) lithium garnets. Among the investigated lithium garnets, Li7La2.75Y0.25Zr2O12 sintered at 1200 °C exhibits a maximized room temperature total (bulk + grain boundary) Li+ conductivity of 3.21 × 10−4 S cm−1 along with improved relative density of 96 %. The preliminary investigation on the structural stability of Li7La2.75Y0.25Zr2O12 in the solutions of 1 M LiCl, dist. H2O and 1 M LiOH at 30 °C/50 °C indicates that the Li7La2.75Y0.25Zr2O12 is relatively stable against 1 M LiCl and dist. H2O. Further electrochemical investigation is essential for practical application of Li7La2.75Y0.25Zr2O12 as protective solid electrolyte membrane in aqueous Li-air battery.

Keywords

Solid electrolytes Lithium garnets Li+ conductivity Li-air battery 

Notes

Acknowledgments

The authors thank BRNS, DAE, Mumbai, India [No. 37(3)/14/42/2014-BRNS], for the financial support. One of the authors (C.D) gratefully acknowledges CSIR [No.09/559/(0097)/2013/EMR-I dated 14-03-2013] for the financial support. The authors thank Prof. Y. Iriyama, Nagoya University, Japan, for extending the FE-SEM facilities.

References

  1. 1.
    Girishkumar G, McCloskey B, Luntz AC, Swanson S, Wilcke W (2010) J Phys Chem Lett 1:2193CrossRefGoogle Scholar
  2. 2.
    Hasegawa S, Imanishi N, Zhang T, Xie J, Hirano A, Takeda Y, Yamamoto O (2009) J Power Sources 189:371CrossRefGoogle Scholar
  3. 3.
    Thangadurai V, Kaack H, Weppner W (2003) J Am Ceram Soc 86:437CrossRefGoogle Scholar
  4. 4.
    Thangadurai V, Adams S, Weppner W (2004) Chem Mater 16:2998CrossRefGoogle Scholar
  5. 5.
    Thangadurai V, Weppner W (2005) Adv Funct Mater 15:107CrossRefGoogle Scholar
  6. 6.
    Murugan R, Thangadurai V, Weppner W (2007) Angew Chem Int Ed 46:7778CrossRefGoogle Scholar
  7. 7.
    Murugan R, Thangadurai V, Weppner W (2007) Angew Chem 119:7925CrossRefGoogle Scholar
  8. 8.
    Thangadurai V, Weppner W (2005) J Am Ceram Soc 88:411CrossRefGoogle Scholar
  9. 9.
    Murugan R, Weppner W, Schmid-Beurmann P, Thangadurai V (2008) Mater Res Bull 43:2579CrossRefGoogle Scholar
  10. 10.
    Thangadurai V, Weppner W (2006) J Solid State Chem 179:974CrossRefGoogle Scholar
  11. 11.
    Murugan R, Weppner W, Schmid-Beurmann P, Thangadurai V (2007) Mater Sci Eng B 143:14CrossRefGoogle Scholar
  12. 12.
    Murugan R, Thangadurai V, Weppner W (2007) Ionics 13:195CrossRefGoogle Scholar
  13. 13.
    Murugan R, Thangadurai V, Weppner W (2008) Appl Phys A Mater Sci Process 91:615CrossRefGoogle Scholar
  14. 14.
    Zaib T, Ortner M, Murugan R, Weppner W (2010) Ionics 16:855CrossRefGoogle Scholar
  15. 15.
    Awaka J, Takashima A, Kataoka K, Kijima N, Idemoto Y, Akimoto J (2011) Chem Lett 40:60CrossRefGoogle Scholar
  16. 16.
    Kumazaki S, Iriyama Y, Kim KH, Murugan R, Tanabe K, Yamamoto K, Hirayama T, Ogumi Z (2011) Electrochem. Commun. 13:509Google Scholar
  17. 17.
    Toda S, Ishiguro K, Shimonishi Y, Hirano A, Takeda Y, Yamamoto O, Imanishi N (2013) Solid State Ionics 233:102CrossRefGoogle Scholar
  18. 18.
    Larraz G, Orera A, Sanjuan ML (2013) J Mater Chem A 1:11419CrossRefGoogle Scholar
  19. 19.
    Awaka J, Kijima N, Hayakawa H, Akimoto J (2009) J Solid State Chem 182:2046CrossRefGoogle Scholar
  20. 20.
    Dumon A, Huang M, Shen Y, Nan CW (2013) Solid State Ionics 243:36CrossRefGoogle Scholar
  21. 21.
    Rangasamy E, Wolfenstine J, Allen J, Sakamoto J (2013) J Power Sources 230:261CrossRefGoogle Scholar
  22. 22.
    Ohta S, Kobayashi T, Asaoka T (2011) J Power Sources 196:3342CrossRefGoogle Scholar
  23. 23.
    Logeat A, Koehler T, Eisele U, Stiaszny B, Harzer A, Tovar M, Senyshyn A, Ehrenberg H, Kozinsky B (2012) Solid State Ionics 206:33CrossRefGoogle Scholar
  24. 24.
    Murugan R, Ramakumar S, Janani N (2011) Electrochem. Commun 13:1373Google Scholar
  25. 25.
    Dhivya L, Janani N, Palanivel B, Murugan R (2013) AIP Adv 3:082115(1)CrossRefGoogle Scholar
  26. 26.
    Ramakumar S, Satyanarayana L, Manorama SV, Murugan R (2013) Phys Chem Chem Phys 15:11327Google Scholar
  27. 27.
    Deviannapoorani C, Dhivya L, Ramakumar S, Murugan R (2013) J Power Sources 240:18CrossRefGoogle Scholar
  28. 28.
    Rangasamy E, Wolfenstine J, Sakamoto J (2012) Solid State Ionics 206:28CrossRefGoogle Scholar
  29. 29.
    Hubaud AA, Schroeder DJ, Key B, Ingram BJ, Dogan F, Vaughey JT (2013) J Mater Chem A 1:8813CrossRefGoogle Scholar
  30. 30.
    Howard MA, Clemens O, Kendrick E, Knight KS, Apperley DC, Anderson PA, Slater PR (2012) DaltonTrans 41:12048CrossRefGoogle Scholar
  31. 31.
    Liu K, Ma JT, Wang CA (2014) J Power Sources 260:109CrossRefGoogle Scholar
  32. 32.
    C. Yang, L. Y. Qiu, G. X. Xin (2013) Chin. Phys. B, 22:078201(1).Google Scholar
  33. 33.
    Dudkin BN, Bugaeva AY, Zainullin GG, Filippov VN (2004) Refract Ind Ceram 45:1CrossRefGoogle Scholar
  34. 34.
    Dhivya L, Murugan R (2014) ACS appl. Mater Interfaces 6:17606CrossRefGoogle Scholar
  35. 35.
    Denton AR, Ashcroft NW (1991) Vegard’s law. Phys Rev A 43:3161CrossRefGoogle Scholar
  36. 36.
    Shannon RD (1976) Acta Crystallogr 32:751CrossRefGoogle Scholar
  37. 37.
    Shimonishi Y, Toda A, Zhang T, Hirano A, Imanishi N, Yamamoto O, Takeda Y (2011) Solid state. Ionics 183:48CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • C. Deviannapoorani
    • 1
  • Lakshmi S. Shankar
    • 1
  • S. Ramakumar
    • 1
  • Ramaswamy Murugan
    • 1
    Email author
  1. 1.Department of PhysicsPondicherry UniversityPuducherryIndia

Personalised recommendations