, Volume 22, Issue 3, pp 317–325 | Cite as

Synthesis and characterization of substituted garnet and perovskite-based lithium-ion conducting solid electrolytes

  • María Abreu-Sepúlveda
  • Dominique E. Williams
  • Ashfia Huq
  • Chetan Dhital
  • Yunchao Li
  • M. Parans Paranthaman
  • Karim Zaghib
  • A. ManivannanEmail author
Original Paper


Titanium, tantalum-substituted Li7La3Zr2-xAxO12 (LLZO, A = Ta, Ti) garnets, and chromium-substituted La(2/3)-xLi3xTi1-yCryO3 (LLTO) perovskites were prepared by a conventional solid-state reaction and the Pechini processes. The desired crystal phases were obtained by varying the calcination temperature and time, as well as the substitution concentration. All samples indicated decomposition of the precursors when heated above 750 °C and formation of the desired phase after heat treatment at higher temperatures. Neutron diffraction data shows the formation of a predominant cubic phase in the case of Ta-LLZO, and monoclinic phase with minor impurity phases for Cr-LLTO. Ionic conductivity for Ti-LLZO (Li7La3Zr1.4Ti0.6O12), Ta-LLZO (Li6.03La3Zr1.533Ta0.46O12), and Cr-LLTO (La(2/3)-xLi3xTi0.9Cr0.1O3) at room temperature were found to be 5.21 × 10−6, 1.01 × 10−6, and 1.2 × 10−4 S cm−1, respectively. The activation energies of the compounds were determined from the Arrhenius plot and were 0.44 eV (Ti0.6-LLZO), 0.54 eV (Ta0.5-LLZO), and 0.20 eV (Cr0.1-LLTO).


Solid electrolytes Garnet Perovskite Lithium-ion conduction Solid-state lithium-ion battery 



This work was supported by the Vehicle Technology Program (EERE), Oak Ridge Institute for Science and Education (ORISE), and Mickey Leland Energy Fellowship (MLEF) programs. A portion of this research at ORNL’s Spallation Neutron Source was sponsored by the US Department of Energy, Office of Basic Energy Sciences, Scientific User Facilities Division. Support (MPP and YL) for Neutron characterizations and impedance measurements was provided by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences, and Engineering Division.


  1. 1.
    Fergus JW (2010) J Power Sources 195:4554CrossRefGoogle Scholar
  2. 2.
    Thangadurai V, Kaack H, Weppner W (2003) J Am Ceram Soc 86(3):437CrossRefGoogle Scholar
  3. 3.
    Murugan R, Thangadurai V, Weppner W (2008) Appl Phys A 91:615CrossRefGoogle Scholar
  4. 4.
    Murugan R, Weppner W, Schmid-Beurmann P, Thangadurai V (2007) Mater Sci Eng B143:14CrossRefGoogle Scholar
  5. 5.
    Murugan R, Thangadurai V, Weppner W (2007) Ionics 13:195CrossRefGoogle Scholar
  6. 6.
    Gupta A, Murugan R, Paranthaman MP, Bi Z, Bridges CA, Nakanishi M, Sokolov AP, Han KS, Hagaman EW, Xie H, Mullins CB, Goodenough JB (2012) J Power Sources 209:184CrossRefGoogle Scholar
  7. 7.
    Latie L, Villeneuve G, Conte D, Flem GL (1984) J Solid State Chem 51:293CrossRefGoogle Scholar
  8. 8.
    Zaib T, Ortnet M, Murugan R, Weppner W (2009) Ionics 16:855Google Scholar
  9. 9.
    Awaka J, Kijima N, Kataoka K, Hayakawa H, Ohshima K, Akimoto J (2010) J Solid State Chem 183:180CrossRefGoogle Scholar
  10. 10.
    Percival J, Kendrick E, Smith RI, Slater PR (2009) Dalton Trans 26:5177CrossRefGoogle Scholar
  11. 11.
    Rangasamy E, Wolfenstine J, Sakamoto J (2012) Solid State Ionics 206:28CrossRefGoogle Scholar
  12. 12.
    Galven C, Fourquet JL, Crosnier-Lopez MP, Le Berre F (2011) Chem Mater 23:1892CrossRefGoogle Scholar
  13. 13.
    Kumazaki S, Iriyama Y, Kim K-H, Murugan R, Tanabe K, Yamamoto K, Hirayama T, Ogumi Z (2011) Electrochem Commun 13:509CrossRefGoogle Scholar
  14. 14.
    Murugan R, Thangadurai V, Weppner W (2007) Angew Chem Int Ed 46:7778CrossRefGoogle Scholar
  15. 15.
    Belous AG, Novitskaya GN, Polyanetskaya SV, Gornikov YI (1987) Izv Akad Russ J Inorg Chem 32:470Google Scholar
  16. 16.
    Kawai H, Kuwano J (1994) J Electrochem Soc 141:L78CrossRefGoogle Scholar
  17. 17.
    Harada Y, Hirakoso Y, Kawai H, Kuwano J (1999) Solid State Ionics 121:245CrossRefGoogle Scholar
  18. 18.
    Inaguma Y, Itoh M (1996) Solid State Ionics 86–8:257CrossRefGoogle Scholar
  19. 19.
    Kunugi S, Inaguma Y, Itoh M (1999) Solid State Ionics 122:35CrossRefGoogle Scholar
  20. 20.
    Ibarra J, Varez A, Leon C, Santamaria J, Torres-Martinez LM, Sanz J (2000) Solid State Ionics 134:219CrossRefGoogle Scholar
  21. 21.
    Ban CW, Choi GM (2001) Solid State Ionics 140:285CrossRefGoogle Scholar
  22. 22.
    Inaguma Y, Katsumata T, Itoh M, Morii Y (2002) J Solid State Chem 166(18):67CrossRefGoogle Scholar
  23. 23.
    Geiger CA, Alekseev E, Lazic B, Fisch M, Armbruster T, Langner R, Fechtelkord M, Kim N, Pettke T, Weppner W (2011) Inorg Chem 50:1089CrossRefGoogle Scholar
  24. 24.
    Bi Z, Bridges CA, Kim J-H, Huq A, Paranthaman MP (2011) J Power Sources 196:7395CrossRefGoogle Scholar
  25. 25.
    Li Y, Wang C-A, Xie H, Cheng J, Goodenough JB (2011) Electrochem Commun 13:1289CrossRefGoogle Scholar
  26. 26.
    Li Y, Cao Y, Guo X (2013) Solid State Ionics 253:76CrossRefGoogle Scholar
  27. 27.
    Toby BH (2001) J Appl Crystallogr 34(2):210CrossRefGoogle Scholar
  28. 28.
    Stramare S, Thangadurai V, Weppner W (2003) Chem Mater 15:3974CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg (outside the USA) 2015

Authors and Affiliations

  • María Abreu-Sepúlveda
    • 1
  • Dominique E. Williams
    • 1
  • Ashfia Huq
    • 2
  • Chetan Dhital
    • 2
  • Yunchao Li
    • 3
  • M. Parans Paranthaman
    • 3
  • Karim Zaghib
    • 4
  • A. Manivannan
    • 1
    • 5
    Email author
  1. 1.United States Department of Energy, NETLMorgantownUSA
  2. 2.Chemical and Engineering Materials DivisionOak Ridge National LaboratoryOak RidgeUSA
  3. 3.Chemical Sciences DivisionOak Ridge National LaboratoryOak RidgeUSA
  4. 4.Hydro-QuebecQuebecCanada
  5. 5.Mechanical and Aerospace EngineeringWest Virginia UniversityMorgantownUSA

Personalised recommendations