, Volume 21, Issue 12, pp 3267–3278 | Cite as

Simultaneous electrochemical determination of ascorbic acid, epinephrine, and uric acid using a polymer film-modified electrode based on Au nanoparticles/poly(3,3′,5,5′-tetrabromo-m-cresolsulfonphthalein)

  • M. Taei
  • H. Hadadzadeh
  • F. Hasanpour
  • N. Tavakkoli
  • M. Hadadi Dolatabadi
Original Paper


A new polymer film-modified electrode based on the Au nanoparticles/poly(3,3′,5,5′-tetrabromo-m-cresolsulfonphthalein)/glassy carbon electrode (Au-NPs/poly(BCG)/GCE) was prepared for the simultaneous determination of ascorbic acid (AA), epinephrine (EP), and uric acid (UA). The prepared electrode, Au-NPs/poly(BCG)/GCE, was characterized by scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS), and attenuated total reflectance–Fourier transform infrared spectroscopy (ATR-FTIR). The poly(BCG) film showed an efficient electrocatalytic activity for the oxidation of AA, UA, and EP. In addition, the prepared electrode separates the oxidation peak potential of AA-EP by 140 mV, and EP-UA by 140 mV, while the bare GCE cannot resolve them.


Ascorbic acid Epinephrine Uric acid 3,3′,5,5′-Tetrabromo-m-cresolsulfonphthalein Au nanoparticles 



The authors gratefully acknowledge support of this work by the Research Council of Payame Noor University and Green Chemistry.


  1. 1.
    Ensafi AA, Mirahmadi Zare SZ, Rezaei B, Taei M (2010) Simultaneous determination of ascorbic acid, epinephrine, and uric acid by differential pulse voltammetry using poly(3,3′-bis[N,N-bis(carboxymethyl)aminomethyl]-o-cresolsulfonephthalein) modified glassy carbon electrode. Sensors Actuators B 150:321–329CrossRefGoogle Scholar
  2. 2.
    Eswara Dutt VVS, Mottola HA (1974) Determination of uric acid at the microgram level by a kinetic procedure based on a pseudo-induction period. Anal Chem 46:1777–1781CrossRefGoogle Scholar
  3. 3.
    Miland E, Ordieres AJM, Blanco PT, Smyth MR, Fagain CO (1996) Poly(o-aminophenol)-modified bienzyme carbon paste electrode for the detection of uric acid. Talanta 43:785–796CrossRefGoogle Scholar
  4. 4.
    Kocak CC, Dursun Z (2013) Simultaneous determination of ascorbic acid, epinephrine and uric acid at over-oxidized poly(p-aminophenol) film modified electrode. J Electroanal Chem 694:94–103CrossRefGoogle Scholar
  5. 5.
    Cincotto FH, Canevari TC, Campos AM, Landers R, Machado SAS (2014) Simultaneous determination of epinephrine and dopamine by electrochemical reduction on the hybrid material SiO2/graphene Oxide content Ag nanoparticles. Analyst 139:4634–4640CrossRefGoogle Scholar
  6. 6.
    Xinying M, Mingyong C, Zhaoxia W (2012) Electrochemical detection of dopamine in the presence of epinephrine, uric acid and ascorbic acid using a graphene-modified electrode. Anal Methods 4:1687–1692CrossRefGoogle Scholar
  7. 7.
    Raoof JB, Ojani R, Baghayeri M (2011) A selective sensor based on a glassy carbon electrode modified with carbon nanotubes and ruthenium oxide/hexacyanoferrate film for simultaneous determination of ascorbic acid, epinephrine and uric acid. Anal Methods 3:2367–2373CrossRefGoogle Scholar
  8. 8.
    Taei M, Jamshidi M (2014) Highly selective determination of ascorbic acid, epinephrine, and uric acid by differential pulse voltammetry using poly(Adizol Black B)-modified glassy carbon electrode. J Solid State Electrochem 18:673–683CrossRefGoogle Scholar
  9. 9.
    Zhang Y, Ren W, Zhang S (2013) Simultaneous determination of epinephrine, dopamine, ascorbic acid and uric acid by polydopamine-nanogold composites modified electrode. Int J Electrochem Sci 8:6839–6850Google Scholar
  10. 10.
    Gao Q, Guo Y, Liu J, Yuan X, Qi H, Zhang C (2011) A biosensor prepared by co-entrapment of a glucose oxidase and a carbon nanotube within an electrochemically deposited redox polymer multilayer. Bioelectrochemistry 81:109–113CrossRefGoogle Scholar
  11. 11.
    Li J, Zhao J, Wei X (2009) A sensitive and selective sensor for dopamine determination based on a molecularly imprinted electropolymer of o-aminophenol. Sens Actuators B 140:663–669CrossRefGoogle Scholar
  12. 12.
    Cosnier S (2005) Affinity biosensors based on electropolymerized films. Electroanalysis 17:1701–1715CrossRefGoogle Scholar
  13. 13.
    Ulubay S, Dursun Z (2010) Cu nanoparticles incorporated polypyrrole modified GCE for sensitive simultaneous determination of dopamine and uric acid. Talanta 80:1461–1466CrossRefGoogle Scholar
  14. 14.
    Zykwinska A, Domagala W, Pilawa B, Lapkowski M (2005) Electrochemical overoxidation of poly(3,4-ethylenedioxythiophene)—PEDOT studied by means of in situ ESR spectroelectrochemistry. Electrochim Acta 50:1625–1633CrossRefGoogle Scholar
  15. 15.
    Malhotra BD, Chaubey A, Singh SP (2006) Prospects of conducting polymers in biosensors. Anal Chim Acta 578:59–74CrossRefGoogle Scholar
  16. 16.
    Hou JY, Ai SH (2011) Electrochemical determination of reduced glutathione at multiwalled carbon nanotubes/poly(bromocresol green) modified glassy carbon electrode. Chem Res Chin Univ 27:934–938Google Scholar
  17. 17.
    Luczak T (2009) Epinephrine oxidation in the presence of interfering molecules on gold and gold electrodes modified with gold nanoparticles and thiodipropionic acid in aqueous solution. A comparative study. Electroanalysis 21:2557–2562CrossRefGoogle Scholar
  18. 18.
    Li J, Lin XQ (2007) Electrodeposition of gold nanoclusters on overoxidized polypyrrole film modified glassy carbon electrode and its application for the simultaneous determination of epinephrine and uric acid under coexistence of ascorbic acid. Anal Chim Acta 596:222–230CrossRefGoogle Scholar
  19. 19.
    Shahrokhian S, Khafaji M (2010) Application of pyrolytic graphite modified with nano-diamond/graphite film for simultaneous voltammetric determination of epinephrine and uric acid in the presence of ascorbic acid. Electrochim Acta 55:9090–9096CrossRefGoogle Scholar
  20. 20.
    Ghoreishi SM, Behpour M, Motaghedi Fard MH (2012) Electrochemical methods for simultaneous determination of trace amounts of dopamine and uric acid using a carbon paste electrode incorporated with multi-wall carbon nanotubes and modified with α-cyclodextrine. J Solid State Electrochem 16:179–189CrossRefGoogle Scholar
  21. 21.
    Wang F, Xu Y, Wang L, Lu K, Ye B (2012) Immobilization of DNA on a glassy carbon electrode based on Langmuir–Blodgett technique: application to the detection of epinephrine. J Solid State Electrochem 16:2127–2133CrossRefGoogle Scholar
  22. 22.
    Zhou Y, He M, Huang C, Dong S (2012) A novel and simple biosensor based on poly(indoleacetic acid) film and its application for simultaneous electrochemical determination of dopamine and epinephrine in the presence of ascorbic acid. J Solid State Electrochem 16:2203–2210CrossRefGoogle Scholar
  23. 23.
    Raoof JB, Chekin F, Ojani R, Barari S, Anbia M, Mandegarzad S (2012) Synthesis and characterization of ordered mesoporous carbon as electrocatalyst for simultaneous determination of epinephrine and acetaminophen. J Solid State Electrochem 16:3753–3760CrossRefGoogle Scholar
  24. 24.
    Taei M, Ramazani G (2014) Simultaneous determination of norepinephrine, acetaminophen and tyrosine by differential pulse voltammetry using Au-nanoparticles/poly(2-amino-2-hydroxymethyl-propane-1,3-diol) film modified glassy carbon electrode. Colloids Surf B 123:23–32CrossRefGoogle Scholar
  25. 25.
    Dorraji PS, Jalali F (2014) Novel sensitive electrochemical sensor for simultaneous determination of epinephrine and uric acid by using a nanocomposite of MWCNTs–chitosan and gold nanoparticles attached to thioglycolic acid. Sensors Actuators B 200:251–258CrossRefGoogle Scholar
  26. 26.
    Dyson RW (1990) Engineering polymers. Blackie and son Ltd, New YorkGoogle Scholar
  27. 27.
    Bard AJ, Faulkner LR (1980) Electrochemical methods; fundamentals and applications. Wiley, New YorkGoogle Scholar
  28. 28.
    Chen W, Lin X, Luo H, Huang L (2005) Electrocatalytic oxidation and determination of norepinephrine at poly(cresol red) modified glassy carbon electrode. Electroanalysis 17:941–945CrossRefGoogle Scholar
  29. 29.
    Zhang R, Liu S, Wang L, Yang G (2013) Electroanalysis of ascorbic acid using poly(bromocresol purple) film modified glassy carbon electrode. Measurement 46:1089–1093CrossRefGoogle Scholar
  30. 30.
    Gao C, Yan D (2004) Hyperbranched polymers: from synthesis to applications. Prog Polym Sci 29:183–275, Engineering Polymers, By R.W. Dyson, First published 1990 Blackie and son Ltd, Page 121 CrossRefGoogle Scholar
  31. 31.
    Galus Z (1976) Fundamentals of electrochemical analysis. Ellis Horwood, New YorkGoogle Scholar
  32. 32.
    Miller JN, Miller JC (2000) Statistics and chemometrics for analytical chemistry, 4th edn. Pearson Education Ltd., Edinburgh Gate, Harlow, Essex, UKGoogle Scholar
  33. 33.
    Eb L, Hq W (2005) Determination of uric acid by chemiluminescence. US Nat Library Med Nat Inst Health 25:1213–1215 (in Chinese) Google Scholar
  34. 34.
    Grudpan K, Kamfoo K, Jakmunee J (1999) Flow injection spectrophotometric or conductometric determination of ascorbic acid in a vitamin C tablet using permanganate or ammonia. Talanta 49:1023–1026CrossRefGoogle Scholar
  35. 35.
    Solich P, Polydorou CK, Koupparis MA, Efstathiou CE (2000) Automated flow-injection spectrophotometric determination of catecholamines (epinephrine and isoproterenol) in pharmaceutical formulations based on ferrous complex formation. J Pharm Biomed Anal 22:781–789CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • M. Taei
    • 1
  • H. Hadadzadeh
    • 2
  • F. Hasanpour
    • 1
  • N. Tavakkoli
    • 1
  • M. Hadadi Dolatabadi
    • 1
  1. 1.Department of ChemistryPayame Noor UniversityTehranIran
  2. 2.Department of ChemistryIsfahan University of TechnologyIsfahanIran

Personalised recommendations