Advertisement

Ionics

, Volume 21, Issue 7, pp 1801–1812 | Cite as

Lithium metal borate (LiMBO3) family of insertion materials for Li-ion batteries: a sneak peak

  • Prabeer BarpandaEmail author
  • Debasmita Dwibedi
  • Swatilekha Ghosh
  • Yongho Kee
  • Shigeto Okada
Review

Abstract

Rechargeable lithium-ion battery remains the leading electrochemical energy-storage device, albeit demanding steady effort of design and development of superior cathode materials. Polyanionic framework compounds are widely explored in search for such cathode contenders. Here, lithium metal borate (LiMBO3) forms a unique class of insertion materials having the lowest weight polyanion (i.e., BO3 3−), thus offering the highest possible theoretical capacity (ca. 220 mAh/g). Since the first report in 2001, LiMBO3 has rather slow progress in comparison to other polyanionic cathode systems based on PO4, SO4, and SiO4. The current review gives a sneak peak to the progress on LiMBO3 cathode systems in the last 15 years highlighting their salient features and impediments in cathode implementation. The synthesis and structural aspects of borate family are described along with the critical analysis of the electrochemical performance of borate family of insertion materials.

Keywords

Li-ion battery Polyanion Borate LiMBO3 Polymorphism Capacity 

Notes

Acknowledgments

We are grateful to the Department of Science and Technology (Govt. of India) for financial support under the Indo-Israel S&T cooperation project (DST/INT/ISR/P-10/2014). DD and SG thank Ministry of Human Resource Development (MHRD) and University Grant Commission (UGC), respectively, for fellowship support at the Indian Institute of Science. PB thanks Department of Atomic Energy for a DAE-BRNS Young Scientist Fellowship support.

References

  1. 1.
    Whittingham MS (2004) Chem Rev 104:4271–4302CrossRefGoogle Scholar
  2. 2.
    Goodenough JB, Park KS (2013) J Am Chem Soc 135:1167–1176CrossRefGoogle Scholar
  3. 3.
    Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) J Electrochem Soc 144:1188–1194CrossRefGoogle Scholar
  4. 4.
    Manthiram A, Goodenough JB (1989) J Power Sources 26:403–408CrossRefGoogle Scholar
  5. 5.
    Padhi AK, Manivannan V, Goodenough JB (1998) J Electrochem Soc 145:1518–1520CrossRefGoogle Scholar
  6. 6.
    Legagneur V, An Y, Mosbah A, Portal R, Salle A, Verbaere A, Guyomard D, Piffard Y (2001) Solid State Ionics 139:37–46CrossRefGoogle Scholar
  7. 7.
    Nyten A, Abouimrane A, Armand M, Gustafsson T, Thomas JO (2005) Electrochem Commun 7:156–160CrossRefGoogle Scholar
  8. 8.
    Nishimura S, Nakamura M, Natsui R, Yamada A (2010) J Am Chem Soc 132:13596–13597CrossRefGoogle Scholar
  9. 9.
    Ramesh TN, Lee KT, Ellis BL, Nazar LF (2010) Electrochem Solid-State Lett 13:43–47CrossRefGoogle Scholar
  10. 10.
    Recham N, Chotard JN, Dupont L, Delacourt C, Walker W, Armand M, Tarascon JM (2010) Nat Mater 9:68–74CrossRefGoogle Scholar
  11. 11.
    Barpanda P, Ati M, Melot BC, Rousse G, Chotard JN, Doublet ML, Sougrati MT, Corr SA, Jumas JC, Tarascon JM (2011) Nat Mater 10:772–779CrossRefGoogle Scholar
  12. 12.
    Barpanda P, Recham N, Chotard JN, Djellab K, Walker W, Armand M, Tarascon JM (2010) J Mater Chem 20:1659–1668CrossRefGoogle Scholar
  13. 13.
    Barpanda P, Chotard JN, Delacourt C, Reynaud M, Filinchuk Y, Armand M, Deschamps M, Tarascon JM (2011) Angew Chem Int Ed 50:2526–2531CrossRefGoogle Scholar
  14. 14.
    Barpanda P (2015) Isr J Chem 55:537–557Google Scholar
  15. 15.
    Tarascon JM, Recham N, Armand M, Chotard JN, Barpanda P, Walker W, Dupont L (2010) Chem Mater 22:724–739CrossRefGoogle Scholar
  16. 16.
    Barpanda P, Nishimura S, Yamada A (2012) Adv Energy Mater 2:841–859CrossRefGoogle Scholar
  17. 17.
    Te Y, Barpanda P, Nishimura S, Furuta N, Chung SC, Yamada A (2013) Chem Mater 25:3623–3629CrossRefGoogle Scholar
  18. 18.
    Tamaru M, Barpanda P, Yamada Y, Nishimura S, Yamada A (2012) J Mater Chem 22:24526–24529CrossRefGoogle Scholar
  19. 19.
    Lehmann HA, Schadow H (1966) Zeits Anorg Alleg Chem 348:42–49CrossRefGoogle Scholar
  20. 20.
    Bondareva OS, Simonov MA, Egorov-Tismenko YK, Belov NV (1978) Sov Phys Crystallogr 23:269–271Google Scholar
  21. 21.
    Norrestam R (1989) Z Kristallogr 187:103–110CrossRefGoogle Scholar
  22. 22.
    Kasanskaja EV, Sandomirskii PA, Simonov MA, Belov NV (1978) Dokl Akad Nauk SSSR 238:1340–1343Google Scholar
  23. 23.
    Sokolova EV, Simonov MA, Belov NV (1980) Kristallogr 25:1285–1286Google Scholar
  24. 24.
    Belkebir A, Tarte P, Rulmont A, Gilber B (1996) New J Chem 20:311–316Google Scholar
  25. 25.
    Piffard Y, Rangan KK, An Y, Guyomard D, Tournoux M (1998) Acta Cryst C54:1561–1563Google Scholar
  26. 26.
    Dong YZ, Zhao YM, Shi ZD, An XN, Fu P, Chen L (2008) Electrochim Acta 53:2339–2345CrossRefGoogle Scholar
  27. 27.
    Dong YZ, Zhao YM, Fu P, Zhou H, Hou XM (2008) J Alloy Compd 461:585–590CrossRefGoogle Scholar
  28. 28.
    Isono M, Okada S, Yamaki J (2010) J Power Sources 195:593–598CrossRefGoogle Scholar
  29. 29.
    Yamada A, Iwane I, Harada Y, Nishimura S, Koyama Y, Tanaka I (2010) Adv Mater 22:3583–3587CrossRefGoogle Scholar
  30. 30.
    Yamada A, Iwane N, Nishimura S, Koyama Y, Tanaka I (2011) J Mater Chem 21:10690–10696CrossRefGoogle Scholar
  31. 31.
    Kim JC, Moore CJ, Kang B, Hautier G, Jain A, Ceder G (2011) J Electrochem Soc 158:309–315CrossRefGoogle Scholar
  32. 32.
    Afyon S, Kundu D, Krumeich F, Nesper R (2013) J Power Sources 224:145–151CrossRefGoogle Scholar
  33. 33.
    Yamashita Y, Barpanda P, Yamada Y, Yamada A (2013) ECS Electrochem Lett 2:75–77CrossRefGoogle Scholar
  34. 34.
    Rowsell JLC, Gaubicher J, Nazar LF (2001) J Power Sources 97–98:254–257CrossRefGoogle Scholar
  35. 35.
    Palos AI, Morcrette M, Strobel P (2002) J Solid State Electrochem 6:134–138CrossRefGoogle Scholar
  36. 36.
    Okada S, Tonuma T, Uebo Y, Yamaki J (2003) J Power Sources 119–121:621–625CrossRefGoogle Scholar
  37. 37.
    Debart A, Revel B, Dupont L, Montagne L, Leriche JB, Touboul M, Tarascon JM (2003) Chem Mater 15:3683–3691CrossRefGoogle Scholar
  38. 38.
    Rowsell JLC, Nazar LF (2001) J Mater Chem 11:3228–3233CrossRefGoogle Scholar
  39. 39.
    Janssen Y, Middlemiss DS, Bo SH, Grey CP, Khalifah PG (2012) J Am Chem Soc 134:12516–12527CrossRefGoogle Scholar
  40. 40.
    Tao L, Rousse G, Chotard JN, Dupont L, Bruyere S, Hanzel D, Mali G, Dominko R, Levasseur S, Masquelier C (2014) J Mater Chem A 2:2060–2070CrossRefGoogle Scholar
  41. 41.
    Barpanda P, Yamashita Y, Yamada Y, Yamada A (2013) J Electrochem Soc 160:3095–3099CrossRefGoogle Scholar
  42. 42.
    Zhang B, Ming L, Zheng J, Zhang J, Shen C, Han Y, Wang J, Qin S (2014) J Power Sources 261:249–254CrossRefGoogle Scholar
  43. 43.
    Aravindan V, Umadevi M (2012) Ionics 18:27–30CrossRefGoogle Scholar
  44. 44.
    Bo SH, Nam KW, Borkiewicz OJ, Hu YY, Yang XQ, Chupas PJ, Chapman KW, Wu L, Zhang L, Wang F, Grey CP, Khalifah PG (2014) Inorg Chem 53:6585–6595CrossRefGoogle Scholar
  45. 45.
    Bo SH, Wang F, Janssen Y, Zeng D, Nam KW, Xu W, Du LS, Graetz J, Yang XQ, Zhu Y, Parise JB, Grey CP, Khalifah PG (2012) J Mater Chem 22:8799–8809CrossRefGoogle Scholar
  46. 46.
    Kobayashi G, Nishimura S, Park MS, Kanno R, Yashima M, Ida T, Yamada A (2009) Adv Funct Mater 19:395–403CrossRefGoogle Scholar
  47. 47.
    Nyten A, Stjerndahl M, Rensmo H, Siegbahn H, Armand M, Gustafsson T, Edstrom K, Thomad JO (2006) J Mater Chem 16:3483–3488CrossRefGoogle Scholar
  48. 48.
    Seo DH, Park YU, Kim SW, Park I, Shakoor RA, Kang K (2011) Phys Rev B 83:205127CrossRefGoogle Scholar
  49. 49.
    Barpanda P, Ye T, Chung SC, Yamada Y, Nishimura S, Yamada A (2012) J Mater Chem 22:13455–13459CrossRefGoogle Scholar
  50. 50.
    Barpanda P, Dedryvere R, Deschamps M, Delacourt C, Reynaud M, Yamada A, Tarascon JM (2012) J Solid State Electrochem 16:1743–1751CrossRefGoogle Scholar
  51. 51.
    Chung SC, Barpanda P, Nishimura S, Yamada Y, Yamada A (2012) Phys Chem Chem Phys 14:8678–8682CrossRefGoogle Scholar
  52. 52.
    Lee KJ, Kang LS, Uhm S, Yoon JS, Kim DW, Hong HS (2013) Curr Appl Phys 13:1440–1443CrossRefGoogle Scholar
  53. 53.
    Karthikeyan K, Lee YS (2014) RSC Adv 4:31851–31854CrossRefGoogle Scholar
  54. 54.
    Kim JC, Li X, Moore CJ, Bo SH, Khalifah PG, Grey CP, Ceder G (2014) Chem Mater 26:4200–4206CrossRefGoogle Scholar
  55. 55.
    Amatucci GG, Blyr A, Sigala C, Alfonso P, Tarascon JM (1997) Solid State Ionics 104:13–25CrossRefGoogle Scholar
  56. 56.
    Chen L, Zhao Y, An X, Liu J, Dong Y, Chen Y, Kuang Q (2010) J Alloys Compd 494:415–419CrossRefGoogle Scholar
  57. 57.
    Ma R, Shao L, Wu K, Lao M, Shui M, Chen C, Wang D, Long N, Ren Y, Shu J (2013) Ceram Int 39:9309–9317CrossRefGoogle Scholar
  58. 58.
    Aravindan V, Karthikeyan K, Amaresh S, Lee YS (2010) Bull Korean Chem Soc 31:1506–1508CrossRefGoogle Scholar
  59. 59.
    Li S, Xu L, Li G, Wang M, Zhai Y (2013) J Power Sources 236:54–60CrossRefGoogle Scholar
  60. 60.
    Muslim A, Ting M, Zhi S, Ili N (2014) Rare Metal Mater Engg 43:2095–2099CrossRefGoogle Scholar
  61. 61.
    Afyon S, Kundu D, Darbandi AJ, Hahn H, Krumeich F, Nesper R (2014) J Mater Chem A 2:18946–18951CrossRefGoogle Scholar
  62. 62.
    Lee YS, Lee H (2014) Electron Mater Lett 10:253–258CrossRefGoogle Scholar
  63. 63.
    Lee YS, Lee H (2014) Mater Lett 132:401–404CrossRefGoogle Scholar
  64. 64.
    Ma T, Muslim A, Su Z (2015) J Power Sources 282:95–99CrossRefGoogle Scholar
  65. 65.
    Tang A, He D, He Z, Xu G, Song H, Peng R (2015) J Power Sources 275:888–892CrossRefGoogle Scholar
  66. 66.
    Afyon S, Mensing C, Krumeich F, Nesper R (2014) Solid State Ionics 256:103–108CrossRefGoogle Scholar
  67. 67.
    Bo SH, Veith GM, Saccomanno MR, Huang H, Burmistrova PV, Malingowski AC, Sacci RL, Kittilstved KR, Grey CP, Khalifah PG (2014) ACS Appl Mater Interfaces 6:10840–10848CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Prabeer Barpanda
    • 1
    Email author
  • Debasmita Dwibedi
    • 1
  • Swatilekha Ghosh
    • 1
  • Yongho Kee
    • 2
  • Shigeto Okada
    • 2
  1. 1.Faraday Materials Laboratory, Materials Research Centre (MRC)Indian Institute of ScienceBangaloreIndia
  2. 2.Institute for Materials Chemistry and Engineering (IMCE)Kyushu UniversityKasugaJapan

Personalised recommendations