Ionics

, Volume 21, Issue 10, pp 2839–2850 | Cite as

Preferential occupancy of Ca2+ dopant in La1-x Ca x InO3-δ (x = 0–0.20) perovskite: structural and electrical properties

  • Kapil Sood
  • K. Singh
  • Suddhasatwa Basu
  • O. P. Pandey
Original Paper

Abstract

Ca-doped LaInO3 (LCI) has been synthesized by conventional solid-state reaction method. The structural features were investigated by X-ray diffraction, Raman spectroscopy and X-ray photoelectron spectroscopy. The structural investigation indicated that Ca2+ dopants occupy both A- and B-sites in ABO3 (La1-x In x O3-δ ). The solid solubility limit has been observed up to x = 0.10 for La1-x Ca x InO3-δ system. In addition, the Raman band softening has been observed with Ca-doping. The impedance spectroscopy shows that 10 mol% of Ca-doped LaInO3 possesses the highest conductivity of the order of 1.64 mS cm−1 at 700 °C among all investigated samples. The activation energy of doped samples lies within the range of 0.69–0.86 eV, which indicates that the conductivity in the reported samples is mainly contributed by ion transportation. SEM analysis supports the well-packed grains in the sintered samples.

Keywords

Ceramics X-ray diffraction Raman spectroscopy Electron microscopy Electrical conductivity Site occupancy 

Notes

Acknowledgments

The financial help for this study was provided by Department of Science and Technology (DST), New Delhi, India, through the letter no. SR/S2/CMP-0035/2011. The authors are thankful to Prof. Prabhakar Singh and Mr. Praveen Kumar, Department of Applied Physics, IIT BHU, Varanasi, India, for their help in ac conductivity measurements. The authors are also thankful to Mrs. Shivani Sood, Department of Physics, NIT-Kurukshetra, India, for her help in SEM measurements. The authors are grateful to Prof. T. Ishihara and his team, Department of Applied Chemistry, Faculty of Engineering, Kyushu University, Japan, for providing ion transport number measurement facility in their lab.

References

  1. 1.
    Goodenough JB (2003) Oxide-ion electrolytes. Annu Rev Mater Res 33:91–128CrossRefGoogle Scholar
  2. 2.
    Repetto L, Agnew G, Borghi AD, Benedetto FD (2006) Detailed simulation of the ohmic resistance of solid oxide fuel cells. J Fuel Cell Sci Technol 4:413–417CrossRefGoogle Scholar
  3. 3.
    Ishihara T, Matsuda H, Takita Y (1994) Doped LaGaO3 perovskite type oxide as a new oxide ionic conductor. J Am Chem Soc 116:3801–3803CrossRefGoogle Scholar
  4. 4.
    Nesaraj AS, Kumar M, Raj A, Pattabiraman RR (2007) Investigations on chemical interactions between alternate cathodes and lanthanum gallate electrolyte for intermediate temperature solid oxide fuel cell (ITSOFC). J Iran Chem Soc 4:89–106CrossRefGoogle Scholar
  5. 5.
    Huang K, Feng M, Goodenough JB (1996) Sol–gel synthesis of a new oxide-ion conductor Sr- and Mg-doped LaGaO3 perovskite. J Am Ceram Soc 79:1100–1104CrossRefGoogle Scholar
  6. 6.
    He H, Huang X, Chen L (2000) Sr-doped LaInO3 and its possible application in a single layer SOFC. Solid State Ionics 130:183–193CrossRefGoogle Scholar
  7. 7.
    Lybye D, Poulsen FW, Mogenson M (2000) Conductivity of A- and B-site doped LaAlO3, LaGaO3, LaScO3 and LaInO3 perovskites. Solid State Ionics 128:91–103CrossRefGoogle Scholar
  8. 8.
    Rozumek M, Majewski P, Schluckwerder H, Aldinger F, Kunstler K, Tomandl G (2004) Electrical conduction behavior of La1+xSr1−xGa3O7–δ melilite-type ceramics. J Am Ceram Soc 87:1795–1798CrossRefGoogle Scholar
  9. 9.
    Ranlov J (1995) PhD Thesis, Riso-R-796(EN), Riso National Laboratory, DenmarkGoogle Scholar
  10. 10.
    Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chaleogenides. Acta Crystallogr A32:751–767CrossRefGoogle Scholar
  11. 11.
    Runka T, Berkowski M, Łapinski A, Drozdowski M (2008) Temperature Raman scattering study of CaAl0.5Ta0.5O3 perovskite crystal. J Phys Chem Solids 69:1646–1651CrossRefGoogle Scholar
  12. 12.
    Berkowski M, Finowicki JF, Diduszko R, Byszewski P, Aleksiyko R, Domukhovska RK (2004) Growth and structure of SrAl0.5Ta0.5O3: LaAlO3: CaAl0.5Ta0.5O3 solid solutions single crystals. J Cryst Growth 269:512–517CrossRefGoogle Scholar
  13. 13.
    Ramachandran B, Rao MSR (2012) Chemical pressure effect on optical properties in multiferroic bulk BiFeO3. J Appl Phys 112:073516CrossRefGoogle Scholar
  14. 14.
    Cherry M, Islam MS, Catlow CRA (1995) Oxygen ion migration in perovskite-type oxides. J Solid State Chem 118:125–132CrossRefGoogle Scholar
  15. 15.
    Khan MS, Islam MS, Bates DR (1998) Dopant substitution and ion migration in the LaGaO3-based oxygen ion conductor. J Phys Chem B102:3099–3104CrossRefGoogle Scholar
  16. 16.
    Trejo ER, Tavizon G, Landeros AA (2003) Structure, point defects and ion migration in LaInO3. J Phys Chem Solids 64:515–521CrossRefGoogle Scholar
  17. 17.
    Iliev MN, Abrashev MV, Lee HG, Popov VN, Sun YY, Thomsen C, Meng RL, Chu CW (1998) Raman spectroscopy of orthorhombic perovskitelike YMnO3 and LaMnO3. Phys Rev B 57:2872–2877CrossRefGoogle Scholar
  18. 18.
    Sood K, Singh K, Pandey OP (2015) Co-existence of cubic and orthorhombic phases in Ba-doped LaInO3 and their effect on conductivity. Physica B 456:250–257CrossRefGoogle Scholar
  19. 19.
    Bielecki J, Parker SF, Ekanayake D, Rahman SMH, Borjesson L, Karlsson M (2014) Short-range structure of the brownmillerite-type oxide Ba2In2O5 and its hydrated proton-conducting form BaInO3H. J Mater Chem A 2:16915–16924CrossRefGoogle Scholar
  20. 20.
    Thakur S, Pandey OP, Singh K (2014) Effect of Ca substitution on structural, magnetic and dielectric properties of BiFeO3. Phase Transit 87:527–540CrossRefGoogle Scholar
  21. 21.
    Reddy MS, Raju GN, Nagarjuna G, Veeraiah N (2007) Structural influence of aluminium, gallium and indium metal oxides by means of dielectric and spectroscopic properties of CaO–Sb2O3–B2O3 glass system. J Alloys Compd 438:41–51CrossRefGoogle Scholar
  22. 22.
    He HP, Huang X, Chen L (2001) An effective way to detect the secondary phase in Sr-doped LaInO3. J Phys Chem Solids 62:701–709CrossRefGoogle Scholar
  23. 23.
    Gentili PL, Penconi M, Costantino F, Sassi P, Ortica F, Rossi F, Elisei F (2010) Structural and photophysical characterization of some La2xGa2yIn2zO3 solid solutions, to be used as photocatalysts for H2 production from water/ethanol solutions. Sol Energy Mater Sol Cells 94:2265–2274CrossRefGoogle Scholar
  24. 24.
    Ramachandran B, Dixit A, Naik R, Lawes G, Rao MSR (2012) Weak ferromagnetic ordering in Ca doped polycrystalline BiFeO3. J Appl Phys 111:023910–023916CrossRefGoogle Scholar
  25. 25.
    Lufaso MW, Woodward PM (2001) Prediction of the crystal structures of perovskites using the software program SPuDS. Acta Crystallogr Sect B: Struct Sci B57:725–738CrossRefGoogle Scholar
  26. 26.
    Byszewski P, Aleksiyko R, Berkowski M, Finowicki JF, Diduszko R, Gebickic W, Baran J, Antonova K (2006) IR and Raman spectroscopy correlation with the structure of (La/Pr)1−x(Pr/Nd)xGaO3 solid solution crystals. J Mol Struct 792–793:62–67CrossRefGoogle Scholar
  27. 27.
    Runka T, Aleksiyko R, Berkowski M, Drozdowski M (2005) Raman scattering study of (SrAl0.5Ta0.5O3)1-x-y:(LaAlO3)x:(CaAl0.5Ta0.5O3)y solid solution crystals. Cryst Res Technol 40:453–458CrossRefGoogle Scholar
  28. 28.
    Baldini M, Castro DD, Guidi MC, Garcia J, Postorino P (2009) Phase-separated states in high-pressure LaMn1−xGaxO3 manganites. Phys Rev B 80:045123–045125CrossRefGoogle Scholar
  29. 29.
    Zhang W, Wang Z, Chen XM (2011) Crystal structure evolution and local symmetry of perovskite solid solution Ba[(Fe1/2Nb1/2)1−xTix]O3 investigated by Raman spectra. J Appl Phys 110:064113–064117CrossRefGoogle Scholar
  30. 30.
    Datta P, Majewski P, Aldinger F (2008) Study of strontium- and magnesium-doped lanthanum gallate solid electrolyte surface by X-ray photoelectron spectroscopy. Mater Res Bull 43:1–8CrossRefGoogle Scholar
  31. 31.
    Biswal RC, Biswas K (2015) Novel way of phase stability of LSGM and its conductivity enhancement. Int J Hydrog Energy 40:509–518CrossRefGoogle Scholar
  32. 32.
    Suga S, Imada S, Muro T, Fukawa T, Shishidou T, Tokura Y, Moritomo Y, Miyahara T (1996) La 4d and Mn core absorption magnetic circular dichroism, XPS and inverse photoemission spectroscopy of La1−xSrxMnO3. J Electron Spectrosc Relat Phenom 78:283–286CrossRefGoogle Scholar
  33. 33.
    Liu B, Tang L, Zhang Y (2009) Preparation and characterization of La0.9Sr0.1Ga0.8Mg0.2O3−δ thin film on the porous cathode for SOFC. Int J Hydrog Energy 34:440–445CrossRefGoogle Scholar
  34. 34.
    Gan J, Lu X, Wu J, Xie S, Zhai T, Yu M, Zhang Z, Mao Y, Wang SCI, Shen Y, Tong Y (2013) Oxygen vacancies promoting photoelectrochemical performance of In2O3 nanocubes. Sci Rep 3:1021–1027Google Scholar
  35. 35.
    Li B, Xie Y, Jing M, Rong G, Tang Y, Zhang G (2006) In2O3 hollow microspheres: synthesis from designed In(OH)3 precursors and applications in gas sensors and photocatalysis. Langmuir 22:9380–9388CrossRefGoogle Scholar
  36. 36.
    Korotcenkov G, Brinzari V, Ivanov M, Cerneavschi A, Rodriguez J, Cornet A, Cirera A, Morante J (2005) Structural stability of indium oxide films deposited by spray pyrolysis during thermal annealing. Thin Solid Films 479:38–51CrossRefGoogle Scholar
  37. 37.
    Polini R, Falsetti A, Traversa E, Schaf O, Knauth P (2007) Sol–gel synthesis, X-ray photoelectron spectroscopy and electrical conductivity of Co-doped (La, Sr)(Ga, Mg)O3−δ perovskites. J Eur Ceram Soc 27:4291–4296CrossRefGoogle Scholar
  38. 38.
    Wu QH, Liu M, Jaegermann W (2005) X-ray photoelectron spectroscopy of La0.5Sr0.5MnO3. Mater Lett 59:1980–1983CrossRefGoogle Scholar
  39. 39.
    Mai L, Hu B, Chen W, Qi Y, Lao C, Yang R, Dai Y (2007) Lithiated MoO3 nanobelts with greatly improved performance for lithium batteries. Adv Mater 19:3712–3716CrossRefGoogle Scholar
  40. 40.
    Barsoukov E, Macdonald JR (2005) Impedance spectroscopy: theory, experiment and applications. John Wiley and Sons, New YorkCrossRefGoogle Scholar
  41. 41.
    Schouler EJH, Mesbahi N, Vitter G (1983) In situ study of the sintering process of yttria stabilized zirconia by impedance spectroscopy. Solid State Ionics 9–10:989–996CrossRefGoogle Scholar
  42. 42.
    Nomura K, Tanase S (1997) Electrical conduction behavior in (La0.9Sr0.1)MIIIO3−δ (MIII=Al, Ga, Sc, In, and Lu) perovskites. Solid State Ionics 98:229–236CrossRefGoogle Scholar
  43. 43.
    Dutta S, Choudhary RNP, Sinha PK, Thakur AK (2004) Microstructural studies of (PbLa)(ZrTi)O3 ceramics using complex impedance spectroscopy. J Appl Phys 96:1607–1613CrossRefGoogle Scholar
  44. 44.
    Kim HL, Lee KH, Kim S, Lee HL (2006) Electrical conduction behavior of BaO-doped LaInO3 perovskite oxide. Jpn J Appl Phys 45:872–874CrossRefGoogle Scholar
  45. 45.
    Hashimoto T, Inagaki Y, Kishi A, Dokiya M (2000) Absorption and secession of H2O and CO2 on Ba2In2O5 and their effects on crystal structure. Solid State Ionics 128:227–231CrossRefGoogle Scholar
  46. 46.
    Wu YC, Lee MZ (2013) Properties and microstructural analysis of La1−xSrxGa1−yMgyO3−δ solid electrolyte ceramic. Ceram Int 39:9331–9341CrossRefGoogle Scholar
  47. 47.
    Anderson PS, Mather GC, Marques FMB, Sinclair DC, West AR (1999) Synthesis and characterisation of La0·95Sr0·05GaO3−δ, La0·95Sr0·05AlO3−δ and Y0·95Sr0·05AlO3−δ. J Eur Ceram Soc 19:1665–1673CrossRefGoogle Scholar
  48. 48.
    Sood K, Singh K, Pandey OP (2010) Synthesis and characterization of Bi-doped zirconia for solid electrolyte. Ionics 16:549–554CrossRefGoogle Scholar
  49. 49.
    Moeggenborg KJ, Papaioannou J, Dye JL (1991) Powder conductivities of 3 electrides. Chem Mater 3:514–520CrossRefGoogle Scholar
  50. 50.
    Sood K, Singh K, Pandey OP (2012) Studies on Sr substituted lanthanum indate as mixed ionic conductor. J Mater Sci 47:4520–4529CrossRefGoogle Scholar
  51. 51.
    Ishihara T, Akbay T, Furutani H, Takita Y (1998) Improved oxide ion conductivity of Co doped La0.8Sr0.2Ga0.8Mg0.2O3 perovskite type oxide. Solid State Ionics 113–115:585–591CrossRefGoogle Scholar
  52. 52.
    Chen X, Wang C, Payzant EA, Xia C, Chu D (2008) An oxide ion and proton co-ion conducting Sn0.9In0.1P2O7 electrolyte for intermediate-temperature fuel cells. J Electrochem Soc 155:1264–1269CrossRefGoogle Scholar
  53. 53.
    Datta P, Majesewski P, Aldinger F (2009) Thermal expansion behaviour of Sr- and Mg-doped LaGaO3 solid electrolyte. J Eur Ceram Soc 29:1463–1468CrossRefGoogle Scholar
  54. 54.
    Richter J, Holtappels P, Graule T, Gauckler LJ (2008) Non-stoichiometry, thermal expansion and electrical properties of Pr1−xSrxMn1−yInyO3−δ perovskites. Solid State Ionics 179:2284–2289CrossRefGoogle Scholar
  55. 55.
    Matsuda M, Ihara K, Miyake M (2004) Influences of Ga doping on lattice parameter, microstructure, thermal expansion coefficient and electrical conductivity of La0.6Sr0.4CoO3−y. Solid State Ionics 172:57–61CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Kapil Sood
    • 1
    • 2
  • K. Singh
    • 1
  • Suddhasatwa Basu
    • 2
  • O. P. Pandey
    • 1
  1. 1.School of Physics and Materials ScienceThapar UniversityPatialaIndia
  2. 2.Department of Chemical EngineeringIndian Institute of Technology DelhiNew DelhiIndia

Personalised recommendations