Skip to main content
Log in

High-performance electrochemical amperometric sensors for the sensitive determination of phenyl urea herbicides diuron and fenuron

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

We have described the fabrication of high-performance amperometric sensors derived from graphene oxide–multiwalled carbon nanotube (GO–MWCNT) composite for the sensitive determination of diuron and fenuron. GO–MWCNT composite was prepared by simple solution-based approach, and its formation was confirmed by scanning electron microscopy, transmission electron microscopy and UV-visible spectroscopy methods. GO–MWCNT film-modified glassy carbon electrode exhibited excellent electrocatalytic performance in the oxidation of diuron and fenuron in terms of less overpotential and highly enhanced peak currents. GO–MWCNTs have presented significantly improved electrocatalytic performance than dimethylformamide-dispersed MWCNTs. GO–MWCNT-based amperometric sensor has been fabricated which detects diuron in wide linear range between 9 μM and 0.38 mM with high sensitivity of 0.645 μA μM−1 cm−2. The amperometric sensor also detects fenuron in broad linear range between 0.9 and 47 μM with sensitivity of 1.20 μA μM−1 cm−2. Moreover, the sensor offers appreciable repeatability, reproducibility, and stability results. Practical feasibility of the prepared amperometric sensor has been assessed in various water samples collected from agricultural areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Giacomazzi S, Cochet N (2004) Environmental impact of diuron transformation: a review. Chemosphere 56:1021–1032

    Article  CAS  Google Scholar 

  2. Sorensen SR, Albers CN, Aamand J (2008) Rapid mineralization of the phenylurea herbicide diuron by Variovorax sp. strain SRS16 in pure culture and within a two-member consortium. Appl Environ Microbiol 74:2332–2340

    Article  Google Scholar 

  3. Sharma P, Bhalla V, Tuteja S, Kukkar M, Suri CR (2012) Rapid extraction and quantitative detection of the herbicide diuron in surface water by a hapten-functionalized carbon nanotubes based electrochemical analyzer. Analyst 137:2495–2502

    Article  CAS  Google Scholar 

  4. Bhalla V, Sharma P, Pandey SK, Suri CR (2012) Impedimetric label-free immunodetection of phenylurea class of herbicides. Sensors Actuators B Chem 171–172:1231–1237

    Article  Google Scholar 

  5. Bhalla V, Zhao X, Zazubovich V (2011) Detection of explosive compounds using photosystem II-based biosensor. J Electroanal Chem 657:84–90

    Article  CAS  Google Scholar 

  6. Wong A, Lanza MRV, Sotomayor MDPT (2013) Sensor for diuron quantitation based on the P450 biomimetic catalyst nickel(II) 1,4,8,11,15,18,22,25-octabutoxy-29H,31H-phthalocyanine. J Electroanal Chem 690:83–88

    Article  CAS  Google Scholar 

  7. Sharma P, Sablok K, Bhalla V, Suri CR (2011) A novel disposable electrochemical immunosensor for phenyl urea herbicide diuron. Biosens Bioelectron 26:4209–4212

    Article  CAS  Google Scholar 

  8. Sharma P, Tuteja S, Bhalla V, Shekhawat G, Dravid VP, Suri CR (2013) Bio-functionalized graphene–graphene oxide nanocomposite based electrochemical immunosensing. Biosens Bioelectron 39:99–105

    Article  CAS  Google Scholar 

  9. Edelahi MC, Oturan N, Oturan MA, Padellec Y, Bermond A, Kacemi KE (2004) Degradation of diuron by the electro-Fenton process. Environ Chem Lett 1:233–236

    Article  CAS  Google Scholar 

  10. Oturan MA, Edelahi MC, Oturan N, Kacemi KE, Aaron JJ (2010) Kinetics of oxidative degradation/mineralization pathways of the phenylurea herbicides diuron, monuron and fenuron in water during application of the electro-Fenton process. Appl Catal B Environ 97:82–89

    Article  CAS  Google Scholar 

  11. Polcaro AM, Mascia M, Palmas S, Vacca A (2004) Electrochemical degradation of diuron and dichloroaniline at BDD electrode. Electrochim Acta 49:649–656

    Article  CAS  Google Scholar 

  12. Loos R, Tavazzi S, Paracchini B, Canuti E, Weissteiner C (2013) Analysis of polar organic contaminants in surface water of the northern Adriatic sea by solid-phase extraction followed by ultrahigh-pressure liquid chromatography–QTRAP® MS using a hybrid triple-quadrupole linear ion trap instrument. Anal Bioanal Chem 405:5875–5885

    Article  CAS  Google Scholar 

  13. Bacigalupo MA, Meroni G (2007) Quantitative determination of diuron in ground and surface water by time-resolved fluoroimmunoassay: seasonal variations of diuron, carbofuran, and paraquat in an agricultural area. J Agric Food Chem 55:3823–3828

    Article  CAS  Google Scholar 

  14. Mugadza T, Nyokong T (2010) Electrocatalytic oxidation of amitrole and diuron on iron(II) tetraaminophthalocyanine-single walled carbon nanotube dendrimers. Electrochim Acta 55:2606–2613

    Article  CAS  Google Scholar 

  15. Mugadza T, Nyokong T (2010) Facile electrocatalytic oxidation of diuron on polymerized nickel hydroxotetraamino-phthalocyanine modified glassy carbon electrodes. Talanta 81:1373–1379

    Article  CAS  Google Scholar 

  16. Mugadza T, Nyokong T (2011) Synthesis, characterization and application of monocarboxy-phthalocyanine-single walled carbon nanotube conjugates in electrocatalysis. Polyhedron 30:1820–1829

    Article  CAS  Google Scholar 

  17. Pramauro E, Vincent M, Augugliaro V, Palmisano L (1993) Photocatalytic degradation of monuron in aqueous TiO2 dispersions. Environ Sci Technol 27:1790–1795

    Article  CAS  Google Scholar 

  18. Haake HM, Best LD, Irth H, Abuknesha R, Brecht A (2000) Label-free biochemical detection coupled on-line to liquid chromatography. Anal Chem 72:3635–3641

    Article  CAS  Google Scholar 

  19. Spurlock FC, Huang K, Genuchten MTV (1995) Isotherm nonlinearity and nonequilibrium sorption effects on transport of fenuron and monuron in soil columns. Environ Sci Technol 29:1000–1007

    Article  CAS  Google Scholar 

  20. Mou RX, Chen MX, Zhi JL (2008) Simultaneous determination of 15 phenylurea herbicides in rice and corn using HPLC with fluorescence detection combined with UV decomposition and post-column derivatization. J Chromatogr B 875:437–443

    Article  CAS  Google Scholar 

  21. Trautwein NL, Guyon JC (1982) Determination of the pesticides monuron, diuron and fenuron by low temperature phosphorimetry. Mikrochim Acta 393-398

  22. Sanchis-Mallols JM, Sagrado S, Medina-Hernandez MJ, Villanueva Camañas RM, Bonet-Domingo E (1998) Determination of phenylurea herbicides in drinking waters by HPLC and solid phase extraction. J Liq Chromatogr Relat Technol 21:869–881

    Article  CAS  Google Scholar 

  23. Dalton RL, Pease HL (1962) Determination of residues of diuron, monuron, fenuron, and neburon. J Assoc Off Agric Chem 45:377–381

    CAS  Google Scholar 

  24. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191

    Article  CAS  Google Scholar 

  25. Mani V, Dinesh B, Chen SM, Saraswathi R (2014) Direct electrochemistry of myoglobin at reduced graphene oxide-multiwalled carbon nanotubes-platinum nanoparticles nanocomposite and biosensing towards hydrogen peroxide and nitrite. Biosens Bioelectron 53:420–427

    Article  CAS  Google Scholar 

  26. Mani V, Chen SM, Lou BS (2013) Three dimensional graphene oxide-carbon nanotubes and graphene-carbon nanotubes hybrids. Int J Electrochem Sci 8:11641–11660

    CAS  Google Scholar 

  27. Mani V, Periasamy AP, Chen SM (2012) Highly selective amperometric nitrite sensor based on chemically reduced graphene oxide modified electrode. Electrochem Commun 17:75–78

    Article  CAS  Google Scholar 

  28. Mani V, Devasenathipathy R, Chen SM, Subramani B, Govindasamy M (2015) A novel glucose biosensor at glucose oxidase immobilized graphene and bismuth nanocomposite film modified electrode. Int J Electrochem Sci 10:691–700

    CAS  Google Scholar 

  29. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  30. Yen MY, Hsiao MC, Liao SH, Liu PI, Tsai HM, Ma CCM, Pu NW, Ger MD (2011) Preparation of graphene/multi-walled carbon nanotube hybrid and its use as photoanodes of dye-sensitized solar cells. Carbon 49:3597–3606

    Article  CAS  Google Scholar 

  31. Zhang D, Yan T, Shi L, Peng Z, Wen X, Zhang J (2012) Enhanced capacitive deionization performance of graphene/carbon nanotube composites. J Mater Chem 22:14696–14704

    Article  CAS  Google Scholar 

  32. Fan Z, Yan J, Zhi L, Zhang Q, Wei T, Feng J, Zhang M, Qian W, Wei F (2010) A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors. Adv Mater 22:3723–3728

    Article  CAS  Google Scholar 

  33. Stoner BR, Glass JT (2012) Carbon nanostructures: a morphological classification for charge density optimization. Diam Relat Mater 23:130–134

    Article  CAS  Google Scholar 

  34. You B, Li N, Zhu H, Zhu X, Yang J (2013) Graphene oxide-dispersed pristine CNTs support for MnO2 nanorods as high performance supercapacitor electrodes. ChemSusChem 6:474–480

    Article  CAS  Google Scholar 

  35. Han P, Yue Y, Liu Z, Xu W, Zhang L, Xu H, Dong S, Cui G (2011) Graphene oxide nanosheets/multi-walled carbon nanotubes hybrid as an excellent electrocatalytic material towards VO2+/VO2+ redox couples for vanadium redox flow batteries. Energy Environ Sci 4:4710–4717

    Article  CAS  Google Scholar 

  36. Tung VC, Kim J, Huang J (2012) Graphene oxide:single-walled carbon nanotube-based interfacial layer for all-solution-processed multijunction solar cells in both regular and inverted geometries. Adv Eng Mater 2:299–303

    Article  CAS  Google Scholar 

  37. Unnikrishnan B, Mani V, Chen SM (2012) Highly sensitive amperometric sensor for carbamazepine determination based on electrochemically reduced graphene oxide–single-walled carbon nanotube composite film. Sensors Actuators B Chem 173:274–280

    Article  CAS  Google Scholar 

  38. Mani V, Devadas B, Chen SM (2013) Direct electrochemistry of glucose oxidase at electrochemically reduced graphene oxide-multiwalled carbon nanotubes hybrid material modified electrode for glucose biosensor. Biosens Bioelectron 41:309–315

    Article  CAS  Google Scholar 

  39. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339

    Article  CAS  Google Scholar 

  40. Zhang C, Ren L, Wang X, Liu T (2010) Graphene oxide-assisted dispersion of pristine multiwalled carbon nanotubes in aqueous media. J Phys Chem C 114:11435–11440

    Article  CAS  Google Scholar 

  41. Santos WJR, Sousa AL, Luz RCS, Damos FS, Kubota LT, Tanaka AA, Tanaka SMCN (2006) Amperometric sensor for nitrite using a glassy carbon electrode modified with alternating layers of iron(III) tetra-(N-methyl-4-pyridyl)-porphyrin and cobalt(II) tetrasulfonated phthalocyanine. Talanta 70:588–594

    Article  CAS  Google Scholar 

  42. Mugadza T, Nyokong T (2011) Electrochemical, microscopic and spectroscopic characterization of benzene diamine functionalized single walled carbon nanotube-cobalt (II) tetracarboxy-phthalocyanine conjugates. J Colloid Interface Sci 354:437–447

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Council and the Ministry of Education of Taiwan (Republic of China).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shen-Ming Chen.

Electronic supplementary material

ESM 1

(DOC 1215 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mani, V., Devasenathipathy, R., Chen, SM. et al. High-performance electrochemical amperometric sensors for the sensitive determination of phenyl urea herbicides diuron and fenuron. Ionics 21, 2675–2683 (2015). https://doi.org/10.1007/s11581-015-1459-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-015-1459-2

Keywords

Navigation