Ionics

, Volume 21, Issue 2, pp 593–599 | Cite as

Composite-porous polymer membrane with reduced crystalline for lithium–ion battery via non-solvent evaporate method

  • Peng Yan
  • Zhao Huang
  • Ye Lin
  • Xiaoyan Wu
  • Yang Yang
  • Dan Wang
  • Fanglin Chen
  • Chunming Zhang
  • Dannong He
Short Communication

Abstract

Nano-TiO2 is selected as inorganic filler to fabricate the reduced crystalline composite polymer membrane. The porous polymer matrix employed in this study was poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) membrane synthesized via non-solvent evaporate method and the electrolyte solution uptake was carried out in the glove box to avoid the moisture contamination. The effect of nano-TiO2 on the crystalline of porous polymer membrane was studied. It was found that blending with nano-TiO2 helps to reduce the crystalline of polymer membrane. Electrochemical impedance spectroscopy showed that the room temperature conductivity of PVDF-HFP/TiO2 composite-porous polymer electrolyte (CPPE) increased up to 1.5 × 10−3S/cm, and scanning electron microscope (SEM) micrographs showed that the micro-pores and nano-TiO2 particles were observed in the polymer membrane. Furthermore, the composite-porous polymer electrolyte was stable up to 4.5 V (vs. Li/Li+) and the LiFePO4/CPPE/Li coin cell showed excellent rate capability, the discharge capacity obtained at 0.1C, 0.5C, 1C, and 3C were 164, 157, 143, and 122 mAh/g, respectively. And the cell had about 6 % capacity loss when it discharged at 1C for 50 cycles.

Keywords

Lithium–ion battery Composite-porous polymer electrolyte Inorganic filler Reduced crystalline 

References

  1. 1.
    Tarascon JM, Armand M (2001) Nature 6861:359–367CrossRefGoogle Scholar
  2. 2.
    Scrosati B, Garche J (2010) J Power Sources 9:2419–2430CrossRefGoogle Scholar
  3. 3.
    Meyer WH (1998) Adv Mater 6:439–448CrossRefGoogle Scholar
  4. 4.
    Song JY, Wang YY, Wan CC (1999) J Power Sources 2:183–197CrossRefGoogle Scholar
  5. 5.
    Murata K, Izuchi S, Yoshihisa Y (2000) Electrochim Acta 8:1501–1508CrossRefGoogle Scholar
  6. 6.
    Zuo X, Liu XM, Cai F et al (2012) J Mater Chem 41:22265–22271CrossRefGoogle Scholar
  7. 7.
    Kim KM, Park NG, Ryu KS et al (2006) Electrochim Acta 26:5636–5644CrossRefGoogle Scholar
  8. 8.
    Du Pasquier A, Warren PC, Culver D et al (2000) Solid State Ionics 1:249–257CrossRefGoogle Scholar
  9. 9.
    Manuel Stephan A, Teeters D (2003) Electrochim Acta 14:2143–2148CrossRefGoogle Scholar
  10. 10.
    Wang X, Gong C, He D et al (2014) J Membr Sci 454:298–304CrossRefGoogle Scholar
  11. 11.
    Wu CG, Lu MI, Chuang HJ (2005) Polymer 16:5929–5938CrossRefGoogle Scholar
  12. 12.
    Peramunage D, Abraham KM (1998) J Electrochem Soc 8:2615–2622CrossRefGoogle Scholar
  13. 13.
    Kataoka H, Saito Y, Sakai T et al (2000) J Phys Chem B 48:11460–11464CrossRefGoogle Scholar
  14. 14.
    Saito Y, Kataoka H, Quartarone E et al (2002) J Phys Chem B 29:7200–7204CrossRefGoogle Scholar
  15. 15.
    Zhai W, Zhu H, Wang L et al (2014) Electrochim Acta 133:623–630CrossRefGoogle Scholar
  16. 16.
    Sgambetterra M, Panero S, Hassoun J et al (2013) Ionics 9:1203–1206CrossRefGoogle Scholar
  17. 17.
    Kumar GG, Kim P, Elizabeth RN (2007) J Membr Sci 1:126–131CrossRefGoogle Scholar
  18. 18.
    Aravindan V, Vickraman P (2008) J Appl Polym Sci 2:1314–1322CrossRefGoogle Scholar
  19. 19.
    Lin CW, Hung CL, Venkateswarlu M et al (2005) J Power Sources 1:397–401CrossRefGoogle Scholar
  20. 20.
    Croce F, Persi L, Scrosati B et al (2001) Electrochim Acta 16:2457–2461CrossRefGoogle Scholar
  21. 21.
    Lauter U, Meyer WH, Wegner G (1997) Macromolecules 7:2092–2101CrossRefGoogle Scholar
  22. 22.
    Wieczorek W, Such K, Chung SH et al (1994) J Phys Chem 36:9047–9055CrossRefGoogle Scholar
  23. 23.
    Kim SK, Kim WD, Kim KM et al (2004) Appl Phys Lett 18:4112–4114CrossRefGoogle Scholar
  24. 24.
    Luo B, Wang X, Wang Y et al (2014) J Mater Chem 2:510–519CrossRefGoogle Scholar
  25. 25.
    Xie G, Zhu HJ, Liu XM et al (2013) J Alloys Compd 574:155–160CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Peng Yan
    • 1
  • Zhao Huang
    • 2
  • Ye Lin
    • 3
  • Xiaoyan Wu
    • 1
  • Yang Yang
    • 1
  • Dan Wang
    • 1
  • Fanglin Chen
    • 3
  • Chunming Zhang
    • 1
  • Dannong He
    • 1
    • 2
  1. 1.National Engineering Research Center for NanotechnologyShanghaiPeople’s Republic of China
  2. 2.School of Material Science and EngineeringShanghai Jiaotong UniversityShanghaiPeople’s Republic of China
  3. 3.Department of Mechanical EngineeringUniversity of South CarolinaColumbiaUSA

Personalised recommendations