Advertisement

Ionics

, Volume 21, Issue 2, pp 579–585 | Cite as

Electrochemical stability of optimized Si/C composites anode for lithium-ion batteries

  • Jianping Wang
  • Chongyun Wang
  • Yuanmin Zhu
  • Ningning Wu
  • Wenhuai Tian
Short Communication

Abstract

We present a simple versatile strategy to synthesized the Si/C composites as anode material for lithium batteries through the pyrolysis of starch as the precursor. Different ratios of Si to starch are used to optimize the compound and the electrochemical properties of the composites. The structure and morphology of the Si/C composites are investigated systematically by thermogravimetric and differential thermal analysis, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The electrochemical properties of Si/C composites electrode are investigated by constant current charge–discharge, cyclic voltammetry, and electrochemical impedance spectra techniques. As an anode material for lithium-ion batteries, the Si/(48 wt%)C composites exhibit the best electrochemical properties with the capacity retention of 91.3 % after 50 cycles with a current density of 100 mA g−1. The improvement could be attributed to the introduction of carbon in the Si/(48 wt%)C composites, which can provide a rapid lithium transport pathway, reduce the cell impedance, and stabilize the electrode structure during the lithium alloying–dealloying process.

Keywords

Li-ion batteries Anodes Electrochemical characterizations Charging/discharging 

Notes

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China with Grant no. 50671012.

References

  1. 1.
    Scosati B, Garche J (2010) Lithium batteries: status, prospects and future. J Power Sources 195:2419–2430CrossRefGoogle Scholar
  2. 2.
    Arico AS, Bruce P, Scrosati B, Tarascon JM, Schalkwijk WV (2005) Nanostructured materials for advanced energy conversion and storage devices. Nature 4:366–377CrossRefGoogle Scholar
  3. 3.
    Hu YS, Demir-Cakan R, Titirici MM, Muller JO, Schlogl R, Antonietti M, Maier J (2008) Superior storage performance of a Si@SiOx/C nanocomposite as anode material for lithium-ion batteries. Angew Chem Int Ed 47:1645–1649CrossRefGoogle Scholar
  4. 4.
    Chen S, Mikhail LG, Yi R, Giles H, Hiesang S, Wang D (2012) Silicon core-hollow carbon shell nanocomposites with tunable buffer voids for high capacity anodes of lithium-ion batteries. Phys Chem Chem Phys 14:12741–12745CrossRefGoogle Scholar
  5. 5.
    Zhang L, Deng J, Liu L, Si W, Oswald S, Xi L, Kundu M, Ma G, Gemming T, Baunack S, Ding F, Yan C, Schmidt OG (2014) Hierarchically designed SiOx/SiOy bilayer nanomembranes as stable anodes for lithium ion batteries. Adv Mater 26:4527–4532CrossRefGoogle Scholar
  6. 6.
    Pan A, Wu HB, Yu L, Lou XWD (2013) Template-free synthesis of VO2 hollow microspheres with various interiors and their conversion into V2O5 for lithium-ion batteries. Angew Chem 125:2282–2286CrossRefGoogle Scholar
  7. 7.
    Yan C, Xi W, Si W, Deng J, Schmidt OG (2014) Highly conductive and strain-released hybrid Multilayer Ge/Ti nanomembranes with enhanced lithium-ion-storage capability. Adv Mater 25:539–544CrossRefGoogle Scholar
  8. 8.
    Boukamp BA, Lesh GC, Huggins RA (1981) All‐solid lithium electrodes with mixed-conductor matrix. J Electrochem Soc 128:725–729CrossRefGoogle Scholar
  9. 9.
    Szczech JR, Jin S (2011) Nanostructured silicon for high capacity lithium battery anodes. Energy Environ Sci 4:56–72CrossRefGoogle Scholar
  10. 10.
    Li H, Wang ZX, Chen LQ, Huang XJ (2009) Research on advanced materials for Li-ion batteries. Adv Mater 21:4593–4607CrossRefGoogle Scholar
  11. 11.
    Kasavajjula U, Wang C, Appleby AJ (2007) Nano-and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J Power Sources 163:1003–1039CrossRefGoogle Scholar
  12. 12.
    Beattie SD, Larcher D, Morcrette M, Simon B, Tarascon JM (2008) Si electrodes for Li-ion batteries—a new way to look at an old problem. J Electrochem Soc 155:A158–A163CrossRefGoogle Scholar
  13. 13.
    Ding N, Xu J, Yao YX, Wegner G, Lieberwirth I, Chen CH (2009) Improvement of cyclability of Si as anode for Li-ion batteries. J Power Sources 192:644–651CrossRefGoogle Scholar
  14. 14.
    Yamada M, Ueda A, Matsumoto K, Ohzuku T (2011) Silicon-based negative electrode for high-capacity lithium-ion batteries: “SiO”-carbon composite. J Electrochem Soc 158:A417–A421CrossRefGoogle Scholar
  15. 15.
    Thakur M, Isaacson M, Sinsabaugh SL, Wong MS, Biswal SL (2012) Gold-coated porous silicon films as anodes for lithium ion batteries. J Power Sources 205:426–432CrossRefGoogle Scholar
  16. 16.
    Wang J, Zhao HL, He JC, Wang CM, Wang J (2011) Nano-sized SiOx/C composite anode for lithium ion batteries. J Power Sources 196:4811–4815CrossRefGoogle Scholar
  17. 17.
    Fuchsbichler B, Stangl C, Kren H, Uhlig F, Koller S (2011) High capacity graphite–silicon composite anode material for lithium-ion batteries. J Power Sources 196:2889–2892CrossRefGoogle Scholar
  18. 18.
    Lai J, Guo HJ, Wang ZX, Li XH, Zhang XP, Wu FX, Yue P (2012) Preparation and characterization of flake graphite/silicon/carbon spherical composite as anode materials for lithium-ion batteries. J Alloys Compd 530:30–35CrossRefGoogle Scholar
  19. 19.
    Magasinski A, Dixon P, Hertzberg B, Kvit A, Ayala J, Yushin G (2010) High-performance lithium-ion anodes using hierarchical bottom-up approach. Nat Mater 9:353–358CrossRefGoogle Scholar
  20. 20.
    Liu WR, Guo ZZ, Young WS, Shieh DT, Wu HC, Yang MH, Wu NL (2005) Effect of electrode structure on performance of Si anode in Li-ion batteries: Si particle size and conductive additive. J Power Sources 140:139–144CrossRefGoogle Scholar
  21. 21.
    Holzapfel M, Buqa H, Hardwick LJ, Hahn M, Wursig A, Scheifele W, Novak P, Kotz R, Veit C, Petrat FM (2006) Nano silicon for lithium-ion batteries. Electrochim Acta 52:973–978CrossRefGoogle Scholar
  22. 22.
    Nguyen SH, Lim JC, Lee JK (2012) Electrochemical characteristics of bundle-type silicon nanorods as an anode material for lithium ion batteries. Electrochim Acta 74:53–58CrossRefGoogle Scholar
  23. 23.
    Guo H, Zhao H, Yin C, Qiu W (2006) A nanosized silicon thin film as high capacity anode material for Li-ion rechargeable batteries. Mater Sci Eng B 131:173–176CrossRefGoogle Scholar
  24. 24.
    Ohara S, Suzuki J, Sekine K, Takamura T (2004) A thin film silicon anode for Li-ion batteries having a very large specific capacity and long cycle life. J Power Sources 136:303–306CrossRefGoogle Scholar
  25. 25.
    Maranchi JP, Hepp AF, Kumta PN (2003) High capacity, reversible silicon thin-film anodes for lithium-ion batteries. Electrochem Solid-State Lett 6:A198–A201CrossRefGoogle Scholar
  26. 26.
    Kim JB, Lee HY, Lee KS, Lim SH, Lee SM (2003) Fe/Si multi-layer thin film anodes for lithium rechargeable thin film batteries. Electrochem Commun 5:544–548CrossRefGoogle Scholar
  27. 27.
    Takamura T, Ohara S, Uehara M, Suzuki J, Sekine K (2004) A vacuum deposited Si film having a Li extraction capacity over 2000 mAh/g with a long cycle life. J Power Sources 129:96–100CrossRefGoogle Scholar
  28. 28.
    Wang C, Yin L, Xiang D, Qi Y (2012) Uniform carbon layer coated Mn3O4 nanorod anodes with improved reversible capacity and cyclic stability for lithium ion batteries. ACS Appl Mater Interfaces 4:1636–1642CrossRefGoogle Scholar
  29. 29.
    Hossain S, Saleh Y, Loutfy R (2001) Carbon–carbon composite as anodes for lithium-ion battery systems. J Power Sources 96:5–13CrossRefGoogle Scholar
  30. 30.
    Feng X, Yang J, Lu Q, Wang J, NuLi Y (2013) Facile approach to SiOx/Si/C composite anode material from bulk SiO for lithium ion batteries. Phys Chem Chem Phys 15:14420–14426CrossRefGoogle Scholar
  31. 31.
    Wang CS, Wu GT, Zhang XB, Qi ZF, Li WZ (1998) Lithium insertion in carbon-silicon composite materials produced by mechanical milling. J Electrochem Soc 145:2751–2758CrossRefGoogle Scholar
  32. 32.
    Wang D, Gao M, Pan H, Liu Y, Wang J, Li S, Ge H (2014) Enhanced cycle stability of micro-sized Si/C anode material with low carbon content fabricated via spray drying and in situ carbonization. J Alloys Compd 604:130–136CrossRefGoogle Scholar
  33. 33.
    Yi R, Fang D, Gordin ML, Chen S, Wang D (2013) Micro-sized Si-C composite with interconnected nanoscale building blocks as high-performance anodes for practical application in lithium-ion batteries. Adv Energy Mater 3:295–300CrossRefGoogle Scholar
  34. 34.
    Ran Y, Fang D, Mikhail LG, Hiesang S, Wang D (2013) Influence of silicon nanoscale building blocks size and carbon coating on the performance of micro-sized Si–C composite Li-ion anodes. Adv Energy Mater 3:1507–1515CrossRefGoogle Scholar
  35. 35.
    Cao YL, Xiao LF, Ai XP, Yang HX (2003) Surface-modified graphite as an improved intercalating anode for lithium-ion batteries. Electrochem Solid-State Lett 6:A30–A33CrossRefGoogle Scholar
  36. 36.
    Yoon S, Lee SI, Kim H, Sohn HJ (2006) Enhancement of capacity of carbon-coated Si-Cu3Si composite anode using metal-organic compound for lithium-ion batteries. J Power Sources 161:1319–1323CrossRefGoogle Scholar
  37. 37.
    Park MS, Rajendran S, Kang YM, Han KS, Han YS, Lee JY (2006) Si-Ni alloy-graphite composite synthesized by arc-melting and high-energy mechanical milling for use as an anode in lithium-ion batteries. J Power Sources 158:650–653CrossRefGoogle Scholar
  38. 38.
    Jiang T, Zhang SC, Qiu XP, Zhu WT, Chen LQ (2007) Preparation and characterization of silicon-based three-dimensional cellular anode for lithium ion battery. Electrochem Commun 9:930–934CrossRefGoogle Scholar
  39. 39.
    Ng SH, Wang J, Wexler D, Chew SY, Liu HK (2007) Amorphous carbon-coated silicon nanocomposites: a low-temperature synthesis via spray pyrolysis and their application as high-capacity anodes for lithium-ion batteries. J Phys Chem C 111:11131–11138CrossRefGoogle Scholar
  40. 40.
    Guo JC, Chen XL, Wang CS (2010) Carbon scaffold structured silicon anodes for lithium-ion batteries. J Mater Chem 20:5035–5040CrossRefGoogle Scholar
  41. 41.
    Ruffo R, Hong SS, Chan CK, Huggins RA, Cui Y (2009) Impedance analysis of silicon nanowire lithium ion battery anodes. J Phys Chem C 113:11390–11398CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Jianping Wang
    • 1
  • Chongyun Wang
    • 1
  • Yuanmin Zhu
    • 1
  • Ningning Wu
    • 2
  • Wenhuai Tian
    • 1
  1. 1.School of Materials Science and EngineeringUniversity of Science and Technology BeijingBeijingChina
  2. 2.CITIC Guoan Mengguli Power Science and Technology CO., LTDBeijingChina

Personalised recommendations