Advertisement

Ionics

, Volume 21, Issue 5, pp 1341–1349 | Cite as

Effect of nano SiO2 on properties of structural, thermal and ionic conductivity of 85.32[NaNO3]–14.68[Sr(NO3)2] mixed system

  • T. Vijay Kumar
  • A. Sadananda Chary
  • A. M. Awasthi
  • Suresh Bhardwaj
  • S. Narender ReddyEmail author
Original Paper

Abstract

In the present study, different mole percent of SiO2 (~10–20 nm) was dispersed into 85.32[NaNO3]–14.68[Sr(NO3)2] mixed system. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and differential scanning calorimetry (DSC) characterizations were carried out on present dispersed system. Alternate current (AC) and direct current (DC) conductivities, dielectric constant, loss, and impedance measurements have been studied in the frequency range from 1 Hz to 10 MHz and in the temperature range from 297 to 553 K. The XRD, FTIR, SEM, and DSC studies of SiO2 dispersed systems reveal the formation of amorphous phase. The frequency dependent ac conductivity follows Jonscher’s universal power law. Dimensionless frequency exponent (n) and dispersion parameter (A) are determined. The enhancement in dc conductivity is observed with the m/o of SiO2 in these electrolyte systems and attains maximum at 20.55 m/o, where from the enhancement starts falling with further increase in m/o, and this enhancement in conductivity is explained using the formation of amorphous phase of ionic salt.

Keywords

Mixed system Nano silica Ac conductivity Frequency exponent Enhancement 

References

  1. 1.
    Ellis Brian L, Nazar Linda F (2012) Sodium and sodium-ion energy storage batteries. Curr Opin Solid State Mater Sci 16:168–177CrossRefGoogle Scholar
  2. 2.
    Kim S-W, Seo D-H, Ma X, Ceder G, Kang K (2012) Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv Energy Mater 2:710–721CrossRefGoogle Scholar
  3. 3.
    Lu X, Guanguang X, Lemmon JP, Yang Z (2010) Advanced materials for sodium-beta alumina batteries: status, challenges and perspectives. J Power Sources 195:2431–2442CrossRefGoogle Scholar
  4. 4.
    Fergus JW (2012) Ion transport in sodium ion conducting solid electrolytes. Solid State Ionics 227:102–112CrossRefGoogle Scholar
  5. 5.
    Agarwal RC, Gupta RK (1997) Detailed investigation of the temperature dependence of ionic transport parameters of a new composite electrolyte system (1-x) (0.75AgI:0.25AgCl): x SnO2. J Mater Sci 32:3327–3333CrossRefGoogle Scholar
  6. 6.
    Bae JS, Pyun (1994) An ac-impedance study of LiI-Al2O3 composite solid-electrolyte. J Mater Sci Lett 13:573–576CrossRefGoogle Scholar
  7. 7.
    Ulihin AS, Uvarov NF, Mateyshina Yu G, Brezhneva LI, Matvienko AA (2006) Composite solid electrolytes LiClO4–Al2O3. Solid State Ionics 177:2787–2790CrossRefGoogle Scholar
  8. 8.
    Kumar A, Shahi K (1994) Conductivity enhancement in NaCl by dispersion of Al2O3. J Solid State Chem 109:15–21CrossRefGoogle Scholar
  9. 9.
    Kumar A, Shahi K (1995) Particle size effect on ionic conductivity in NaCl-Al2O3 composite solid electrolytes. Solid State Commun 94(9):813–816CrossRefGoogle Scholar
  10. 10.
    Anantha PS, Hariharan K (2005) ac Conductivity analysis and dielectric relaxation behaviour of NaNO3-Al2O3 composites. Mater Sci Eng B 121:12–19CrossRefGoogle Scholar
  11. 11.
    Madhava Rao MV, Narender Reddy S, Sadananda Chary A (2005) Dc ionic conductivity of NaNO3: γ-Al2O3 composite solid electrolyte system. Physica B 362:193–198CrossRefGoogle Scholar
  12. 12.
    Jain A, Saha S, Gopalan P, Kulkarni AR (2000) Ionic conductivity of Na2SO4–Al2O3 composite electrolytes: mechanism and the role of the preparatory parameters. J Solid State Chem 153:287–293CrossRefGoogle Scholar
  13. 13.
    Gopalan P, Saha S, Bobade S, Kulkarni AR (2000) On the various approaches to enhancing the conductivity of sodium sulfate: review and current developments. J Solid State Chem 155:154–167CrossRefGoogle Scholar
  14. 14.
    Badr, Kamel (1980) Comparative study of structure changes with temperature in univalent and divalent ionic nitrate crystals. J Phys Chem Solids 41(10):1127–1131CrossRefGoogle Scholar
  15. 15.
    Ramasastry C, Murti YVGS (1968) Electrical conduction in sodium nitrate crystals. Proc R Soc A 305(1483):441–445CrossRefGoogle Scholar
  16. 16.
    Ghadekar SR, Deshmukh BT (1982) Microhardness studies in mixed two-phase solution-grown NaCl-KCl crystals. J Phys D Appl Phys 15:2241–2246CrossRefGoogle Scholar
  17. 17.
    Vijay Kumar T, Swarnalatha R, Sadananda Chary A, Narender Reddy S (2012) Growth, characterization and dc ionic conductivity studies on mixed super ionic conductor NaNO3: Sr(NO3)2. Adv Appl Sci Res 3(5):2599–2604Google Scholar
  18. 18.
    Haering C, Roosen A, Schichl H (2005) Degradation of the electrical conductivity in stabilised zirconia systems: part I: yttria-stabilised zirconia. Solid State Ionics 176:253–259CrossRefGoogle Scholar
  19. 19.
    Zhao L, Wang Y, Chen Z, Zou Y (2008) Preparation, characterization, and optical properties of host–guest nanocomposite material SBA-15/Ag. Physica B 403:1775–1780CrossRefGoogle Scholar
  20. 20.
    Uvarov NF, Vanek P, Savionov M, Zelezny V, Studnicka V, Petzelt J (2000) Percolation effect, thermodynamic properties of AgI and interface phases in AgI–Al2O3 composites. Solid State Ionics 127:253–267CrossRefGoogle Scholar
  21. 21.
    Uvarov NF, Hairetdinov EF, Bratel NB (1993) Russ J Electrochem 29:1406Google Scholar
  22. 22.
    Uvarov NF, Bohonov BB, Isupov VP, Hairetdinov EF (1995) Nanocomposite ionic conductors in the Li2SO4-Al2O3 system. Solid State Ionics 74:15–27CrossRefGoogle Scholar
  23. 23.
    Ponomareva VG, Uvarov NF, Lavrova GV, Hairetdinov EF (1996) Composite protonic solid electrolytes in the CsHSO4-SiO2 system. Solid State Ionics 90:161–166CrossRefGoogle Scholar
  24. 24.
    Uvarov NF, Bokhonov BB, Politov AA, Vanek P, Petzelt J (2000) Interface-stabilized states of silver iodide in AgI–Al2O3 composites. J Mater Synth Process 8:5–6Google Scholar
  25. 25.
    Greenberg J, Hallgren LJ (1960) Infrared absorption spectra of alkali metal nitrates and nitrites above and below the melting point. J Chem Phys 33(3):900–902CrossRefGoogle Scholar
  26. 26.
    Miller FA, Charles H, Wilkins (1952) Infrared spectra and characteristic frequencies of inorganic ions. Department of Research in Chemical Physics Mellon Institute, Pittsburgh 13 Pa. 24(8):1255–1256Google Scholar
  27. 27.
    Shen X, Zhai Y, Sun Y, Gu H (2010) Preparation of monodisperse spherical SiO2 by microwave hydrothermal method and kinetics of dehydrated hydroxyl. J Mater Sci Technol 26(8):711–714CrossRefGoogle Scholar
  28. 28.
    Tripathi R, Kumar A, Bharti C, Sinh TP (2010) Dielectric relaxation of ZnO nanostructure synthesized by soft chemical method. Curr Appl Phys 10(2):676–681CrossRefGoogle Scholar
  29. 29.
    Arous M, Ben Amor I, Kallel A, Fakhfakh Z, Perrier G (2008) Crystallinity and dielectric relaxations in semi-crystalline poly(ether ether ketone). J Phys Chem Solids 68(7):1405–1414CrossRefGoogle Scholar
  30. 30.
    Tareev B (1979) Phys. dielectric materials. Mir Publication, MoscowGoogle Scholar
  31. 31.
    Mishra A, Choudhary SN, Prasad K, Choudhary RNP (2011) Complex impedance spectroscopic studies of Ba(Pr1/2Ta1/2)O3 ceramic. Physica B 406:3279–3284CrossRefGoogle Scholar
  32. 32.
    Jonscher AK (1978) Analysis of the alternating current properties of ionic conductors. J Mater Sci 13(2):553–562CrossRefGoogle Scholar
  33. 33.
    Dyre JC, Schrøder TB (2002) Hopping models and ac Universality. Phys Status Solidi B 230:5CrossRefGoogle Scholar
  34. 34.
    Reddy SN, Chary AS, Saibabu K, Chiranjivi T (1989) Enhancement of dc ionic conductivity in dispersed solid electrolyte system—Sr(NO3)2:γ-Al2O3. Solid State Ionics 34(1–2):73–77Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • T. Vijay Kumar
    • 1
  • A. Sadananda Chary
    • 2
  • A. M. Awasthi
    • 3
  • Suresh Bhardwaj
    • 3
  • S. Narender Reddy
    • 4
    Email author
  1. 1.Department of Physics, Arjun College of Technology and SciencesJNTUHHyderabadIndia
  2. 2.Department of Physics, University College of ScienceOsmania UniversityHyderabadIndia
  3. 3.Thermodynamics Lab, UGC DAE ConsortiumIndoreIndia
  4. 4.Department of Physics, University College of EngineeringOsmania UniversityHyderabadIndia

Personalised recommendations