, Volume 21, Issue 3, pp 657–665 | Cite as

Synthesis and electrochemical properties of Li-rich cathode material Li[Ni x Li(1/3−2x/3)Mn(2/3−x/3)]O2 (x = 1/4, 1/3) for Li-ion battery

  • Peng-Zhan Ying
  • Xiang-Yun Qiu
  • Qian-Qian Zhang
  • Quan-Chao Zhuang
Original Paper


Cathode materials Li[Ni x Li(1/3−2x/3)Mn(2/3−x/3)]O2 with different content of Ni (x = 1/4, 1/3) were synthesized using co-precipitation reaction. Power X-ray diffraction measurement confirmed that the obtained Li[Ni x Li(1/3−2x/3)Mn(2/3−x/3)]O2 (x = 1/4, 1/3) possessed a layered structure and \( R\overline{3} m \) space group. Scanning electron microscopy results showed that all Li[Ni x Li(1/3−2x/3)Mn(2/3−x/3)]O2 were characterized by a large amount of micro-nanoparticles with tuck form. Based on our previous studies of conventional layered materials, powerful electrochemical evidences of charge/discharge mechanisms and electrode/electrolyte interfaces properties were given by differential capacitance curves and electrochemical impedance spectroscopy (EIS). It was found that the first charge differential capacitance curves of the Li-rich materials displayed three major reactions: the oxidation of Ni2+/4+, the extraction of oxygen and the exchange of proton, and the capacity contribution are 65.2, 25.6, and 9.2 % respectively. Nevertheless, the oxidation of Ni2+/4+ was the only reaction in the following charge processes. The EIS results showed that Li-rich material could form a stable SEI film in the charge/discharge process even though the breakdown or dissolution of the resistive SEI film appearing in the high voltage; the electronic properties changed with oxidation reactions and phase transition; and the continuous increase of the charge transfer resistance, which might be the major reason of the poor high-rate performance of Li-rich materials.


Lithium-ion battery Li-rich materials The charge/discharge mechanism Electrode/electrolyte interfaces properties 


  1. 1.
    Mizusbima K, Jones PC, Wiseman PJ, Goodenough JB (1980) Mater Res Bull 15:783CrossRefGoogle Scholar
  2. 2.
    Thomas MGSR, David WIF, Goodenough JB (1985) Mater Res Bull 20:1137CrossRefGoogle Scholar
  3. 3.
    Gummow RJ, Thackeray MM (1994) J Electrochem Soc 141:1178CrossRefGoogle Scholar
  4. 4.
    Tarascon JM, Wang E, Shokoohi FK (1991) J Electrochem Soc 138:2859CrossRefGoogle Scholar
  5. 5.
    Padhi AK, Nanjundoswamy KS, Goodenough JB (1997) J Electrochem Soc 144:1188CrossRefGoogle Scholar
  6. 6.
    Caurant D, Baffier N, Garcia B (1996) Solid State Ionics 91:45CrossRefGoogle Scholar
  7. 7.
    Ohzuku T, Makimura Y (2001) Chem Lett 30:642CrossRefGoogle Scholar
  8. 8.
    Fong R, Sacken UY, Dahn JR (1990) J Electrochem Soc 137:2009CrossRefGoogle Scholar
  9. 9.
    Zhao Y-J, Zhao C-S, Sun Z-Q, Feng H-L (2011) Acta Chim Sin 69(02):171 (in Chinese)Google Scholar
  10. 10.
    Tabuchi M, Nabeshima Y, Ado K, Shikano M, Kageyama H, Tatsumi K (2007) J Power Sources 174:554CrossRefGoogle Scholar
  11. 11.
    Du K, Zhou W-Y, Hu G-R, Peng Z-D, Jiang Q-L (2010) Acta Chim Sin 68(14):1391 (in Chinese)Google Scholar
  12. 12.
    Hong YS, Park YJ, Ryu KS, Chang SH (2005) Solid State Ionics 176:1035CrossRefGoogle Scholar
  13. 13.
    Lu ZH, Chen ZH, Dahn JR (2003) Chem Mater 15:3214CrossRefGoogle Scholar
  14. 14.
    Lu Z, Dahn JR (2002) J Electrochem Soc 149:A778CrossRefGoogle Scholar
  15. 15.
    Jiang J, Eberman KW, Krause LJ (2005) J Electrochem Soc 152:A1874CrossRefGoogle Scholar
  16. 16.
    Armstrong AR, Holzapfel M, Novak P, Johnson CS, Kang SH, Thackeray MM, Bruce PG (2006) J Am Chem Soc 128(26):8694CrossRefGoogle Scholar
  17. 17.
    Koyama Y, Tanaka I, Nagao M et al (2009) J Power Sources 189:798–801CrossRefGoogle Scholar
  18. 18.
    Robertson, A. D.; Bruce, P. G. (2002) Chem Comm 2790Google Scholar
  19. 19.
    Armstrong AR, Robertson AD, Bruce PG (2005) J Power Sources 146:275CrossRefGoogle Scholar
  20. 20.
    Lu ZH, Dahn JR (2002) J Electrochem Soc 149(7):A815CrossRefGoogle Scholar
  21. 21.
    Pan CJ, Lee YJ, Ammundsen B, Grey CP (2002) Chem Mater 14:2289CrossRefGoogle Scholar
  22. 22.
    Thackeray MM, Kang SH, Johnson CS, Vaughey JT, Benedek R, Hackney SAJ (2007) Mater Chem 17:3112–3125CrossRefGoogle Scholar
  23. 23.
    Zhao, C.-S. Master Dissertation, Beijing University of Technology, Beijing, 2010 (in Chinese)Google Scholar
  24. 24.
    Johnson CS, Li N, Lefief C, Thackerray MM (2007) Electrochem Commun 9(4):787CrossRefGoogle Scholar
  25. 25.
    Wu Y, Manthiram A (2009) Solid State Ionics 180(1):50CrossRefGoogle Scholar
  26. 26.
    Robertson AD, Bruce PG (2004) Solid State Lett 7(9):A294CrossRefGoogle Scholar
  27. 27.
    Qiu XY, Zhuang QC, Zhang QQ, Cao R, Ying PZ, Qiang YH, Sun SG (2012) Phys Chem Chem Phys 14:2617CrossRefGoogle Scholar
  28. 28.
    Qiu XY, Zhuang QC, Zhang QQ, Cao R, Ying PZ, Qiang YH, Sun SG (2012) J Electroanal Chem 687:35CrossRefGoogle Scholar
  29. 29.
    Zhuang, Q. C.; Qiu, X. Y.; Xu, S. D.; Qiang, Y. H.; Sun, S. G. Chapter 8: diagnosis of electrochemical impedance spectroscopy. Lithium ion batteries—new development, InTech 2011, ISBN: 978-653-307-900-4Google Scholar
  30. 30.
    Levi MD, Wang C, Aurbach D (2004) J Electrochem Soc 151:A781CrossRefGoogle Scholar
  31. 31.
    Levi MD, Markevich E, Wang C, Koltypin M, Aurbach D (2004) J Electrochem Soc 151:A848CrossRefGoogle Scholar
  32. 32.
    Zhuang QC, Wei T, Du LL, Cui YL, Fang L, Sun SG (2010) J Phys Chem C 114(18):8614CrossRefGoogle Scholar
  33. 33.
    Zhang QQ, Zhuang QC, Xu SD, Qiu XY, Cui YL, Shi YL, Qiang YH (2012) Ionics 18:487CrossRefGoogle Scholar
  34. 34.
    Aurbach D, Gamolsky K, Markovsky B, Salitra G, Gofer Y, Heider U, Oesten R, Schmidt M (2000) J Electrochem Soc 147:1322CrossRefGoogle Scholar
  35. 35.
    Ostrovskii D, Ronci F, Scrosati B, Jacobsson P (2001) J Power Sources 103:10CrossRefGoogle Scholar
  36. 36.
    Ostrovskii D, Ronci F, Scrosati B, Jacobsson P (2001) J Power Sources 94:183CrossRefGoogle Scholar
  37. 37.
    Bard AJ, Faulkner LR (2001) Electrochemical methods, 2nd edn. Wiley, New York, p 231Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Li-ion Batteries Lab, School of Materials Science and EngineeringChina University of Mining and TechnologyXuzhouPeople’s Republic of China
  2. 2.Ningde Amperex Technology LimitedNingdePeople’s Republic of China

Personalised recommendations