Highly sensing graphene oxide/poly-arginine-modified electrode for the simultaneous electrochemical determination of buspirone, isoniazid and pyrazinamide drugs
- 521 Downloads
- 9 Citations
Abstract
For the first time, an electrochemical method was proposed for the simultaneous determination of isoniazid (INZ), pyrazinamide (PYZ) and buspirone HCl (BPH) at graphene oxide (GO)/poly-l-arginine (PAG)-modified glassy carbon electrode (GCE). The GO was synthesized by modified Hummer’s method and the surface morphologies of GO and PAG were characterized by scanning electron microscopy (SEM). The simultaneous determinations of INZ, PYZ and BPH were determined by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques. The proposed GO/PAG/GCE sensor has a wide linear range of 20 to 1,400 μM for INZ, 25 to 900 μM for BPH and 25 to 1,600 μM for PYZ, respectively. The low limit of detection (LOD) values was found as 2.59, 3.54 and 3.28 μM respectively, for INZ, BPH and PYZ. The practicality and applicability of the proposed electrode was demonstrated in blood serum and commercially available pharmaceutical tablets. In addition, the obtained results for pharmaceutical tablets were in good agreement with the label claim of the tablets and the proposed method could be employed in pharmaceutical laboratories in the near future.
Keywords
Graphene oxide Arginine Isoniazid Pyrazinamide BuspironeNotes
Acknowledgments
Research supported by the King Saud University, Deanship of Scientific Research, College of Science, Research Center, Saudi Arabia.
References
- 1.Geim AK (2009) Science 324:1530CrossRefGoogle Scholar
- 2.Novoselov KS, Falko VI, Colombo L, Gellert PR, Schwab MG, Kim K (2012) Nature 490:192CrossRefGoogle Scholar
- 3.Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306:666CrossRefGoogle Scholar
- 4.Pumera M, Ambrosi A, Bonanni A, Chng ELK, Poh HL (2010) Trends Anal Chem 29:954CrossRefGoogle Scholar
- 5.Choi W, Lahiri I, Seelaboyina R, Kang YS (2010) Crit Rev Solid State Mater Sci 35:52CrossRefGoogle Scholar
- 6.Hummers WS, Offeman RE (1958) J Am Chem Soc 80:1339CrossRefGoogle Scholar
- 7.Mani V, Devadas B, Chen SM (2013) Biosens Bioelectron 41:309CrossRefGoogle Scholar
- 8.Chung C, Kim YK, Shin D, Ryoo SR, Hong BH (2013) Acc Chem Res 46:2211CrossRefGoogle Scholar
- 9.Thangamuthu R, Pan YC, Chen SM (2010) Electroanalysis 22:1812CrossRefGoogle Scholar
- 10.Cheemalapati S, Palanisamy S, Chen SM (2014) J Appl Electrochem 44:317CrossRefGoogle Scholar
- 11.Santos DP, Bergamini MF, Fogg AG, Zanoni MVB (2005) Microchim Acta 151:127CrossRefGoogle Scholar
- 12.Wei M, Ming SD (2007) Chin J Anal Chem 35:66CrossRefGoogle Scholar
- 13.Zhang K, Luo P, Wu JJ, Wang W, Ye B (2013) Anal Methods 5:5044CrossRefGoogle Scholar
- 14.Zhang F, Gu S, Ding Y, Zhou L, Zhang Z, Li L (2013) J Electroanal Chem 698:25CrossRefGoogle Scholar
- 15.Abedin Khan MDJ, Ahmed Z (2013) Int J Gen Med Pharm 2:2319Google Scholar
- 16.Yan X, Bo X, Guo L (2011) Sensors Actuators B 155:837CrossRefGoogle Scholar
- 17.Nagaraja P, Murthy KCS, Yathirajan HS (1996) Talanta 43:1075CrossRefGoogle Scholar
- 18.Khuhawar MY, Rind FMA (2002) J Chromatogr B 766:357CrossRefGoogle Scholar
- 19.Parfitt K, Sweetman SC, Blake PS, Parsons AV (1999) Martindale - The extra pharmacopoeia, 32nd edn. Pharmaceutical Press, London, pp 643–644Google Scholar
- 20.Dommisse CS, De Vane CL (1985) Intell Clin Pharmacol 19:624Google Scholar
- 21.Gannu R, Yamsani SK, Palem CR, Yamsani VV, Kotagiri H (2009) Anal Chim Acta 647:226CrossRefGoogle Scholar
- 22.Jaisuresh K (2013) Nephrology 2013:3Google Scholar
- 23.Hest RV, Baars H, Kik S, Gerven PV, Trompenaars MC, Kalisvaart N, Keizer S, Borgdorff M, Mensen M, Cobelens F (2004) Clin Infect Dis 39:488CrossRefGoogle Scholar
- 24.Tafazoli S, Mashregi M, O’Brien PJ (2008) Toxicol Appl Pharmacol 229:94CrossRefGoogle Scholar
- 25.Takka S, Sakr A, Goldberg A (2003) J Control Release 88:147CrossRefGoogle Scholar
- 26.Oliveira PRD, Oliveira MM, Zarbin JGA, Marcolino-Junior LH, Bergamini MF (2012) Sensors Actuators B 171-172:795CrossRefGoogle Scholar
- 27.Safavi A, Karimi MA, Nezhad MRH, Kamali R, Saghir N (2004) Spectrochim Acta A 60:765CrossRefGoogle Scholar
- 28.Wu B, Wang Z, Xue Z, Zhou X, Du J, Liu X, Lu X (2012) Analyst 137:3644CrossRefGoogle Scholar
- 29.Cheemalapati S, Palanisamy S, Chen SM (2013) Int J Electrochem Sci 8:3953Google Scholar
- 30.Chaitanya AK, Saravanan RS, Jeevanantham S, Vignesh R, Karthik P (2012) Adv Pharmacoepidemiol Drug Saf 1–108:1Google Scholar
- 31.Madan J, Dwivedi AK, Singh S (2005) Anal Chim Acta 538:345CrossRefGoogle Scholar
- 32.Faria AF, Souza MVN, Bruns RE, Oliveira MAL (2010) Talanta 82:333CrossRefGoogle Scholar
- 33.Gong Z, Basir Y, Chu D, Tipton MM (2009) J Chromatogr B 877:1698CrossRefGoogle Scholar
- 34.Maher HM, Youssef RM (2008) Chemom Intell Lab Syst 94:95CrossRefGoogle Scholar
- 35.Bergamini MF, Santos DP, Zanoni MVB (2013) J Electroanal Chem 690:47CrossRefGoogle Scholar
- 36.Foroutan SM, Zarghi A, Shafaati AR, Khoddam A (2004) IL Farmacol 59:739CrossRefGoogle Scholar
- 37.Jain R, Rani S, Goyal RN (1981) Electrochim Acta 26:1519CrossRefGoogle Scholar
- 38.Riekes MK, Pereira RN, Rauber GS, Cuffini SL, Campos CEM, Silva MAS, Stulzer HK (2012) J Pharm Biomed Anal 70:188CrossRefGoogle Scholar
- 39.Chen SZ, Xu F, Zhang H, Zhang ZQ (1993) Talanta 40:1551CrossRefGoogle Scholar
- 40.Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) Chem Soc Rev 39:228CrossRefGoogle Scholar
- 41.Li Y, Ye Z, Zhou J, Liu J, Song G, Zhang K, Ye B (2012) J Electroanal Chem 687:51CrossRefGoogle Scholar
- 42.Jiang C, Yang T, Jiao K, Gao H (2008) Electrochim Acta 53:2917CrossRefGoogle Scholar
- 43.Cheemalapati S, Palanisamy S, Mani V, Chen SM (2013) Talanta 117:297CrossRefGoogle Scholar
- 44.Johnsson K, Schultz PG (1994) J Am Chem Soc 116:7425CrossRefGoogle Scholar