, Volume 21, Issue 1, pp 221–229 | Cite as

Comparative study of aerogels nanostructured catalysts: Ni/ZrO2–SO4 2− and Ni/ZrO2–Al2O3–SO4 2−

  • N. KamounEmail author
  • M. K. Younes
  • A. Ghorbel
  • A. S. Mamede
  • A. Rives
Original Paper


A series of Ni/ZrO2–SO4 2− and Ni/ZrO2–Al2O3–SO4 2− catalysts were prepared in one step by the sol–gel method and dried in hypercritical conditions of the solvent. The characteristic properties of those solids were investigated using many techniques: the XRD, the physisorption of N2, the IR, the UV–visible, and the X-ray photoelectron spectroscopy (XPS). Textural analysis reveals the mesoporosity of all the aerogel catalysts. Moreover, the addition of alumina to nickel sulfated zirconia at high calcination temperature increased twice the specific surface area, from 72 to 158 m2/g. XRD patterns show that nickel-promoted sulfated zirconia calcined at different temperature develops the tetragonal and the monoclinic ZrO2 phase, whereas the nickel sulfated zirconia alumina exhibits only the ZrO2 tetragonal phase. The addition of aluminum to nickel sulfated zirconia induces significant changes in symmetry of nickel by the migration of Ni ions from octahedral to tetrahedral coordination. XPS spectroscopy shows that the nickel in Ni/ZrO2–SO4 2− catalysts is more reducible than those in Ni/ZrO2–Al2O3–SO4 2−. Nickel sulfated zirconia catalyst exhibits higher activity than nickel sulfated zirconia alumina, in the n-hexane isomerization reaction.


Isomerization Aluminum Sol–gel route Aerogel Sulfated zirconia Nickel 


  1. 1.
    Davis BH, Keogh RA, Srinivasan R (1994) Catal Today 20:219CrossRefGoogle Scholar
  2. 2.
    Song X, Sayari A (1996) Catal Rev Sci Eng 38:329CrossRefGoogle Scholar
  3. 3.
    Sun Y, Ma S, Du Y, Yuan L, Wang S, Yang J, Deng F, Xiao FS (2005) J Phys Chem B 109:2567CrossRefGoogle Scholar
  4. 4.
    Mejri I, Younes MK, Ghorbel A, Eloy P (2006) Stud Surf Sci Catal 162:953CrossRefGoogle Scholar
  5. 5.
    Yang Y, Weng H (2009) J Mol Catal 304:65CrossRefGoogle Scholar
  6. 6.
    Kamoun N, Younes MK, Ghorbel A, Mamede AS, Rives A (2012) J Porous Mater 19:375CrossRefGoogle Scholar
  7. 7.
    Raissi S, Younes MK, Ghorbel A, Garin F (2010) J Sol-Gel Sci Technol 19:819Google Scholar
  8. 8.
    Hsu CY, Heimbuch CR, Armes CT, Gates BC (1992) J Chem Soc Chem Commun 22:1645CrossRefGoogle Scholar
  9. 9.
    Song SX, Mcintosh DJ, Kydd RA (2000) Catal Lett 65:5CrossRefGoogle Scholar
  10. 10.
    Gao Z, Xia YD, Hua WM, Miao CX (1998) Top Catal 6:101CrossRefGoogle Scholar
  11. 11.
    Yu GX, Zhou XL, Tang C, Li CL, Wang JA, Novaro O (2008) Catal Commun 9:1770CrossRefGoogle Scholar
  12. 12.
    Olindo R, Pinna F, Strukul G, Canton P, Riello P, Cerrato G, Meligrana G, Morterra C (2000) Stud Surf Sci Catal 130:2375CrossRefGoogle Scholar
  13. 13.
    Kim SY, Lohitharn N, Goodwin JG, Olindo R, Pinna F, Canton P (2006) Catal Commun 7:209CrossRefGoogle Scholar
  14. 14.
    Wang JH, Mou CY (2008) Catal Today 131:162–172CrossRefGoogle Scholar
  15. 15.
    Sun Y, Walspurger S, Louis B, Sommer J (2005) Appl Catal 292:200CrossRefGoogle Scholar
  16. 16.
    Martin GA, Imelik B (1974) Surf Sci 42:157CrossRefGoogle Scholar
  17. 17.
    Pérez M, Armendariz H, Toledo JA, Vazquez A, Navarrete J, Montoya A, Garcia A (1999) J Mol Catal A 149:169CrossRefGoogle Scholar
  18. 18.
    Pérez M, Armendariz H, Toledo JA, Hernandez F, Armendariz H, Garcia A (2002) Catal Lett 83:201CrossRefGoogle Scholar
  19. 19.
    Mejri I, Younes MK, Ghorbel A (2006) J Sol-Gel Sci Technol 40(1):3CrossRefGoogle Scholar
  20. 20.
    Srinivasan R, Taulbee D, Davis BH (1991) Catal Lett 9:1CrossRefGoogle Scholar
  21. 21.
    Yang YC, Weng HS (2010) Appl Catal A Gen 384:94–100CrossRefGoogle Scholar
  22. 22.
    Gao Z, Chen JM, Hua WM, Tang Y (1994) Stud Surf Sci Catal 90:507CrossRefGoogle Scholar
  23. 23.
    IUPAC Recommendations (1994) Pure Appl Chem 66:1739Google Scholar
  24. 24.
    Tzompantzi FJ, Manriquez ME, Padilla JM, Del Angel G, Gomez R, Mantilla A (2008) Catal Today 133–135:154CrossRefGoogle Scholar
  25. 25.
    Yamagushi T, Tanabe K, Kung YC (1986) Mater Chem Phys 16:67CrossRefGoogle Scholar
  26. 26.
    Morterra C, Cerrato G, Signoretto M (1996) Catal Lett 36:129CrossRefGoogle Scholar
  27. 27.
    Vaudagna SR, Comelli RA, Fígoli NS (1996) React Kinet Catal Lett 58(1):111CrossRefGoogle Scholar
  28. 28.
    Pérez M, Cosultchi AH, Toledo JA, Aree EM (2005) Catal Lett 102:205Google Scholar
  29. 29.
    Pérez M, Toledo JA, Rosas R, Montaya A (2004) Catal Lett 97:59CrossRefGoogle Scholar
  30. 30.
    Abu II, Das DD, Mishra HK, Dalai AK (2003) J Colloid Interface Sci 267(2):382CrossRefGoogle Scholar
  31. 31.
    Signoretto M, Pinna F, Strukul G, Chies P (1997) J Catal 167:522CrossRefGoogle Scholar
  32. 32.
    Babou F, Coudurier G, Vedrine JC (1995) J Catal 152:341CrossRefGoogle Scholar
  33. 33.
    Yamaguchi T, Jin T, Tanabe K (1986) J Phys Chem 90:31CrossRefGoogle Scholar
  34. 34.
    Mishra MK, Tyagi B, Jasra RV (2003) Ind Eng Chem Res 42(23):5727CrossRefGoogle Scholar
  35. 35.
    Bensitel M, Sauer O, Lavelly JC, Morrow BA (1988) Mater Chem Phys 19:147CrossRefGoogle Scholar
  36. 36.
    Chackalackal S, Staffort FE (1966) J Am Chem Soc 88:723CrossRefGoogle Scholar
  37. 37.
    Castellon ER, Lopez AJ, Torres PM (2003) J Solid State Chem 175:159CrossRefGoogle Scholar
  38. 38.
    Barbara SK, Friederike CJ, Robert S (2005) J Catal 68:233Google Scholar
  39. 39.
    Lee KM, Lee WY (2002) Catal Lett 83:6Google Scholar
  40. 40.
    Kim SY, Goodwin JG, Hammache S, Auroux A, Galloway D (2001) J Catal 201:1CrossRefGoogle Scholar
  41. 41.
    Shibiao R, Jinheng Q, Chunyan W, Bolian X, Yining F, YiChin C (2007) J Catal 28(7):651Google Scholar
  42. 42.
    Fonseca RL, González CJ, de Rivas B, Ortiz JIG (2012) Appl Catal A Gen 437–438:53–62CrossRefGoogle Scholar
  43. 43.
    Heracleous E, Lee AF, Wilson K, Lemonidou AA (2005) J Catal 231:159CrossRefGoogle Scholar
  44. 44.
    Morant C, Sanz JM, Galán L, Soriano L, Rueda F (1989) Surf Sci 218:331CrossRefGoogle Scholar
  45. 45.
    Kim P, Kim Y, Kim H, Song IK, Yi J (2004) J Mol Catal A 219:87CrossRefGoogle Scholar
  46. 46.
    Wagner CD, Moulder JF, Davis LE, Riggs WM, Muilenburg GE. Perking-Elmer corporation, Physical Electronics DivisionGoogle Scholar
  47. 47.
    Briggs D, Seah MP (1993) John Willey and Sons, 2nd edn. 1:150Google Scholar
  48. 48.
    Stichert W, Schüth F (1998) J Catal 174:242CrossRefGoogle Scholar
  49. 49.
    Belido AF, Ivanova AS, Pakhomov NA, Volodin AM (2000) J Mol Catal A 158:409CrossRefGoogle Scholar
  50. 50.
    Jentoft XGFC, Jentoft RE, Girgsdies F, Ressler T (2002) Catal Lett 81:25CrossRefGoogle Scholar
  51. 51.
    Ishida T, Yamaguchi T, Tanabe K (1988) Chem Lett 1869Google Scholar
  52. 52.
    Song SX, Kydd RA (1998) Catal Lett 51:95CrossRefGoogle Scholar
  53. 53.
    Moreno JA, Poncelet G (2001) Appl Catal A Gen 210:151CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • N. Kamoun
    • 1
    Email author
  • M. K. Younes
    • 1
  • A. Ghorbel
    • 1
  • A. S. Mamede
    • 2
  • A. Rives
    • 3
  1. 1.Laboratoire de Chimie des Matériaux et Catalyse, Département de Chimie, Faculté des Sciences de TunisUniversité Tunis El ManarTunisTunisia
  2. 2.Unité de Catalyse et de Chimie du Solide UCCS, Université Lille Nord de France F-59000, CNRS UMR 8181, Ecole Nationale Supérieure de Chimie de LilleVilleneuve d’AscqFrance
  3. 3.Unité de Catalyse et de Chimie du Solide UCCS, Université Lille Nord de France F-59000, CNRS UMR 8181, Université Lille1Villeneuve d’AscqFrance

Personalised recommendations