Advertisement

Ionics

, Volume 20, Issue 6, pp 857–866 | Cite as

Structural and electrical properties of nanostructured cerium phosphate

  • Hassouna DhaouadiEmail author
  • Amor Fadhalaoui
  • Adel Mdani
  • Mohamed Rzaigui
Original Paper

Abstract

Cerium phosphate nanomaterials with different morphologies and sizes were synthesized via a hydrothermal process at 150 °C using cetyl-trimethyl-ammonium-bromide and ethylene-diamine-tetra acid as surfactants. The obtained samples were characterized by X-ray diffraction and a scanning electron microscope. A possible growth mechanism was proposed to reveal the formation process. The structural properties and the electrical conductivities of CePO4 nanomaterials were studied. The activation energies were obtained from Arrhenius plots where E a = 1.06 eV. The ac conductivity at different temperatures for CePO4 nanomaterials showed frequency independence in the lower frequency range. The dielectric measurements were carried out as a function of frequency and temperature. Variation of the dielectric properties and the ac conductivity with frequency revealed that the dispersion is due to a Maxwell-Wagner type of interfacial polarization in general.

Keywords

Impedance spectroscopy Electrical properties 

References

  1. 1.
    Jun A, Yoo S, Gwon O, Shin J, Kim G (2013) Electr chim Acta 89:372–376Google Scholar
  2. 2.
    Adelstein N, Mun BS, Ray HL, Ross PN Jr, Neaton JB, De Jonghe L (2011) Phys Rev B 83:205104CrossRefGoogle Scholar
  3. 3.
    Zhou F, Kang KS, Maxisch T, Ceder G, Morgan D (2004) Solid State Commun 132:181–186CrossRefGoogle Scholar
  4. 4.
    Moral E, Fagg D, Chinarro E, Abrantes J, Jurado J, Mather G (2009) Ceram Int 35:1481–1486CrossRefGoogle Scholar
  5. 5.
    Koops CG (1951) Phy Rev 83:121–124CrossRefGoogle Scholar
  6. 6.
    Lee JS, Park EC, Lee SH, Lee DS, Lee YJ, Kim JS, Kim IW, Jin BM (2005) Mat Chem Phys 90:381–384CrossRefGoogle Scholar
  7. 7.
    Park JH, Kim CS, Bae JS, Choi BC, Jeong JH, Moon BK, Seo HJ, Kim IW, Kim JS (2003) Solid State Commun 126:635–645CrossRefGoogle Scholar
  8. 8.
    Park JH, Kim CS, Choi BC, Jeong JH, Moon BK, Seo HJ, Kim IW, Kim JS (2003) Solid State Commun 127:315–322CrossRefGoogle Scholar
  9. 9.
    Meyssamy H, Riwotzki K, Kornowski A, Naused S, Haase M (1999) Adv Mater 11:834–840CrossRefGoogle Scholar
  10. 10.
    Bu WB, Hua ZL, Chen HR, Shi JL (2005) J Phys Chem B 109:14461–14464CrossRefGoogle Scholar
  11. 11.
    Li B, Shen LY, Liu XZ, Wang TM (2000) J Mater Sci Lett 19:343–347CrossRefGoogle Scholar
  12. 12.
    Hen P, Mah T (1997) J Mater Sci 32:3863–3867CrossRefGoogle Scholar
  13. 13.
    Rappaz M, Abraham M, Ramey JO, Boatner LA (1981) Phys Rev B 23:1012–1030CrossRefGoogle Scholar
  14. 14.
    Xing Y, Li M, Davis SA, Mann S (2006) J Phys Chem B Let 110:1111–1113CrossRefGoogle Scholar
  15. 15.
    Rajesh K, Mukundan P, Krishna Pillai P, Nair VR, Warrier KGK (2004) Chem Mater 16:2700–2705CrossRefGoogle Scholar
  16. 16.
    Cao MH, Hu CW, Wu QY, Guo CX, Qi YJ, Wang EB (2005) Nanotechnology 16:282–285CrossRefGoogle Scholar
  17. 17.
    Bu W, Hua Z, Chen H, Shi J (2005) J Phys Chem B 109:14461–14464CrossRefGoogle Scholar
  18. 18.
    Cao M, Hu C, Wu Q, Guo C, Qi Yand Wang E (2005) Nanotechnology 16:282–286CrossRefGoogle Scholar
  19. 19.
    Fang YP, Xu AW, Song RQ, Zhang HX, You LP, Yu JC, Liu HQ (2003) J Am Chem Soc 125:16025–16034CrossRefGoogle Scholar
  20. 20.
    Yang M, You H, Zheng Y, Liu K, Jia G, Song Y, Huang Y, Zhang L, Zhang H (2009) Inorg Chem 48:11559–11565CrossRefGoogle Scholar
  21. 21.
    Bao J, Yu R, Zhang J, Yang X, Wang D, Deng J, Chen J, Xing X (2009) Cryst Eng Comm 11:1630–1634CrossRefGoogle Scholar
  22. 22.
    Schuetz P, Caruso F (2002) Chem Mater 14:4509–4513CrossRefGoogle Scholar
  23. 23.
    Xing Y, Li M, Davis SA, Mann S (2006) J Phys Chem B 110:1099–1101CrossRefGoogle Scholar
  24. 24.
    Wang XD, Song JH, Liu J, Wang ZL (2007) Science 316:102–105CrossRefGoogle Scholar
  25. 25.
    Chen SJ, Liu YC, Shao CL, Mu R, Lu YM, Zhang JY (2005) Adv Mater 17:586–590CrossRefGoogle Scholar
  26. 26.
    Zhang L, Chen D, Jiao X (2006) J Phys Chem B 110:2668–2673CrossRefGoogle Scholar
  27. 27.
    Hanna AA, Mousa SM, Elkomy GM, Sherief MA (2010) Eur J Chem 1:202–211CrossRefGoogle Scholar
  28. 28.
    Szczygiel I, Znamierowska T (1990) J Therm Anal Calorim 36:2195CrossRefGoogle Scholar
  29. 29.
    Wu YJ, Fu HP, Hong RY, Zheng Y, Wei DG (2009) J Alloys Compds 470:497–501CrossRefGoogle Scholar
  30. 30.
    Kumari L, Li WZ, Kulkarni S, Wu KH, Chen W, Wang C, Vannoy CH, Leblanc RM (2010) Nanoscale Res Lett 5:149–157CrossRefGoogle Scholar
  31. 31.
    Cavalcantea LS, Sczancoski JC, Li MS, Longo E, Varela JA (2012) Colloids Surf A: Physico-chem Eng Aspects 396:346–351CrossRefGoogle Scholar
  32. 32.
    Yan RX, Sun XM, Wang X, Peng Q, Li YD (2005) Chem Eur J 11:2183CrossRefGoogle Scholar
  33. 33.
    Zollfrank C, Scheel H, Brungs S, Greil PJ (2008) Cryst Growth Des 8:766CrossRefGoogle Scholar
  34. 34.
    Lucas S, Champion E, Bernache-Assollant D, Leroy G (2004) J solid state chem 177:1312–1320CrossRefGoogle Scholar
  35. 35.
    Mooney RCL (1948) J Chem Phys 16:1003CrossRefGoogle Scholar
  36. 36.
    Cheng Y, Wang YS, Jia C, Bao F (2006) J Phys Chem B 110:24399–24402CrossRefGoogle Scholar
  37. 37.
    Fujishiro Y, Ito H, Sato T, Okuwaki A (1997) J Alloys Compd 252:103–109CrossRefGoogle Scholar
  38. 38.
    Ocaña M, Rodríguez-Clemente R, Serna CJ (1995) Adv Mater 7:212–216CrossRefGoogle Scholar
  39. 39.
    Privman V, Matijevic E (1999) J Colloid Interface Sci 213:36–45CrossRefGoogle Scholar
  40. 40.
    Ammar S, Jouini N, Fievet F, Stephan O, Marhic C, Richard M, Villain F, Moulin CHCd, Brice S, Sainctavit PH (2004) J Non-Cryst Solids 346:658–662CrossRefGoogle Scholar
  41. 41.
    Ponpandian N, Narayana S (2002) J Appl Phys 92:2770–2778CrossRefGoogle Scholar
  42. 42.
    Zouari N, Khemakhem H, Mhiri T, Douad A (1999) J Phys Chem Solids 60:1779CrossRefGoogle Scholar
  43. 43.
    Nan CW, Schope T, Holten S, Kleim H, Birringer R (1999) J Appl Phys 85:7735–7740CrossRefGoogle Scholar
  44. 44.
    Palumbo G, Thorpe SJ, Aust KT (1990) Scr Metall Mater 24:1347–1350CrossRefGoogle Scholar
  45. 45.
    Bollman W (1989) Mater Sci Eng A 113:129CrossRefGoogle Scholar
  46. 46.
    Meilikhov EZ, Farzetdinova M (1998) Phys E 3:190CrossRefGoogle Scholar
  47. 47.
    Snejdar V, Jerhot J (1976) Thin Solid Films 37:303CrossRefGoogle Scholar
  48. 48.
    Setto YWJ (1975) J Appl Phys 46:5247CrossRefGoogle Scholar
  49. 49.
    Li GJ, Sun ZR, Zhao H, Chen CH, Ren RM (2007) Ceram Int 33:1503–1507CrossRefGoogle Scholar
  50. 50.
    Panteix PJ, Julien I, Abe´lard P, Bernache-Assollant D (2008) Ceram Int 34:1579–1586CrossRefGoogle Scholar
  51. 51.
    Arthur TH, Mark GS (1979) J Sol Stat Chem 28:345–361CrossRefGoogle Scholar
  52. 52.
    Schechter A, Savinell RF (2002) Solid State Ionics 147:181CrossRefGoogle Scholar
  53. 53.
    Amri M, Zouari N, Mhiri T, Pechev S, Gravereau P, Von Der Muhll R (2007) J Phys Chem Solids 68:1281CrossRefGoogle Scholar
  54. 54.
    Zouari N, Jaouadi K, Mhiri T (2006) Solid State Ionics 177:244CrossRefGoogle Scholar
  55. 55.
    Diorsa JE, Vargas RA, Albinson I, Mellander BE (2004) Phys Status Solid B 241:1369–1375CrossRefGoogle Scholar
  56. 56.
    Diorsa JE, Vargas RA, Albinson I, Mellander BE (2004) Solid State Commun 132:55CrossRefGoogle Scholar
  57. 57.
    Dutta A, Sinha TP (2011) Mater Res Bull 46:518CrossRefGoogle Scholar
  58. 58.
    Hill RM, Jonscher AK (1979) J Non-Cryst Solids 32:53–69CrossRefGoogle Scholar
  59. 59.
    Elkastawy MA (2010) J Alloys Compd 92:616CrossRefGoogle Scholar
  60. 60.
    Elliot SR (1987) Adv Phys 36:135CrossRefGoogle Scholar
  61. 61.
    Molak A, Paluch M, Pawlus S, Klimontko J, Ujma Z, Gruszka I (2005) J Phys D Appl Phys 38:1450–1460CrossRefGoogle Scholar
  62. 62.
    Nidhan Singh K, Kumar Bajpai P (2011) W J Cond Matter Phys 1:37–48Google Scholar
  63. 63.
    Jonscher AK (1983) Dielectric relaxation in solids. Chelsea Dielectrics Press, LondonGoogle Scholar
  64. 64.
    Macdonald JR (1987) Impedance spectroscopy. Wiley, New YorkGoogle Scholar
  65. 65.
    Kumar A, Manna I (2008) Physica B 403:2298–2305CrossRefGoogle Scholar
  66. 66.
    Amm F, Kumar S, Batoo KM, Yousef A, Lee CG (2008) J Alloys Compd 464:361–369CrossRefGoogle Scholar
  67. 67.
    Afandiyeva IM, Do¨kme I, Altındal S, Bu¨lbu¨l MM, Tataroglu A (2008) Microelectron Eng 85:247–252CrossRefGoogle Scholar
  68. 68.
    Maxwell JC (1873) Electricity and magnetism, vol I. Oxford University Press, London, p 828Google Scholar
  69. 69.
    Wanger KW (1913) Ann Phys (Leipzig) 40:817–855Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Hassouna Dhaouadi
    • 1
    • 4
    Email author
  • Amor Fadhalaoui
    • 2
  • Adel Mdani
    • 3
  • Mohamed Rzaigui
    • 2
  1. 1.Laboratoire des Utiles, INRAP, Technopôle Sidi-ThabetTunisTunisia
  2. 2.Laboratoire Matériaux et EnvironnementJarzounaTunisia
  3. 3.Department of Physics, College of Applied SciencesUmm Al Qura UniversityMeccaSaudi Arabia
  4. 4.Laboratoire des Matériaux UtilesInstitut National de Recherche et d’Analyse Physicochimique, Pôle technologique de Sidi ThabetTunisTunisia

Personalised recommendations